版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
基于HHT时-频熵的声发射管道泄漏诊断
Acoustic emission pipeline leakage diagnosis based on time-frequency entropy of HHT
针对油库管道的泄漏诊断问题,利用管道泄漏声发射信号非平稳的特点,提出了基于HHT时-频熵的声发射管道泄漏诊断方法。该方法采用Hilbert-Huang 变换分析管壁声发射信号,求得信号的HHT 谱,将HHT 时-频平面划分为等面积的时-频块,运用信息熵的计算方法,求得时-频块内所包含能量的信息熵,通过对比信息熵的大小判断管道有无泄漏。采用3 组模拟信号作为仿真对象,求取HHT 时-频熵,其大小与理论分析相符,验证了该方法的有效性。用模拟管道进行输水实验,分别对距离泄漏孔2.0 m 和14.8 m 的管壁声发射信号进行分析,判断管道是否泄漏,实验表明该方法可以准确诊断管道有无泄漏。
In order to detect the leakage of pipeline within tankfarm, this paper puts forward an acoustic emission pipeline leakage diagnosis technique based on time-frequency entropy of HHT, considering the instability of acoustic emission signal from the leakage of pipeline. This technique adopts Hilbert-Huang Transform to analyze the acoustic emission signal of pipe wall and then obtain the HHT spectrum of signal. The HHT time-frequency plane is divided into equal area timefrequency blocks, with the calculation method of information entropy, the information entropy of the energy contained in each time-frequency block is obtained. Then, the information entropies are compared to define whether there is leakage in pipeline. Three sets of analog signal are regarded as the simulation object to calculate the time-frequency entropy of HHT. The obtained value agrees with the theoretical analysis, which verifies the effectiveness of this technique. Simulated pipeline is used for water transportation experiment. The AE signals of pipelines with a distance of 2.0 m and 14.8 m from leakage are analyzed to determine leakage. Experimental results show that this technique can accurately detect pipeline leakage.
[1] 王立坤,王洪超,熊敏,等. 长距离输油管道泄漏监测技术分析及研究建议[J]. 油气储运,2014,33(11):1198-1201. WANG L K,WANG H C,XIONG M,et al. Long distance oil pipeline leak monitoring technology analysis and research proposal[J]. Oil & Gas Storage and Transportation,2014, 33(11): 1198-1201.
[2] 黄郑华. 燃气输配管道泄漏事故类型及其控制措施[J]. 油气储运,2012,31(11):804-818. HUANG Z H. Gas transmission pipeline leakage accident type and its control measures[J]. Oil & Gas Storage and Transportation,2012,31(11):804-818.
[3] 黄维和,郑洪龙,王婷. 我国油气管道建设运行管理技术及发展展望[J]. 油气储运,2014,33(12):1259-1262. HUANG W H,ZHENG H L,WANG T. The construction of oil and gas pipelines running management technology and development prospect[J]. Oil & Gas Storage and Transportation, 2014,33(12):1259-1262.
[4] 王长龙,傅君眉,徐章遂,等. 天然气管道漏磁检测中的信号处理[J]. 天然气工业,2005,25(6):100-103. WANG C L,FU J M,XU Z S,et al. Gas pipeline magnetic flux leakage detection of signal processing[J]. Natural Gas Industry, 2005,25(6):100-103.
[5] MACLEAN A,MORAN C,JOHNSTONE W,et al. Detection of hydrocarbon fuel spills using a distributed fibre optic sensor[J]. Sensors and Actuators A:Physical,2003,109(1): 60-67.
[6] 袁朝庆,刘燕,才英俊. 利用光纤温度传感系统检测天然气管道泄漏[J]. 天然气工业,2006,26(8):117-119. YUAN C Q,LIU Y,CAI Y J. Using the optical fiber temperature sensor system detecting pipeline leakage[J]. Natural Gas Industry,2006,26(8):117-119.
[7] LIOU J C. Leak detection by mass balance effective for Norman wells line[J]. Oil and Gas Journal,1996,94(17):4-7.
[8] 陈志刚,张来斌,梁伟,等. 复杂工况下热油管道泄漏识别与定位方法研究[J]. 西南石油大学学报 ( 自然科学版),2008,30(6): 157-160.CHEN Z G,ZHANG L B,LIANG W,et al. Hot oil pipeline leakage under complicated condition recognition and positioning method research[J]. Journal of Southwest Petroleum University (Natural Science Edition),2008,30(6):157-160.
[9] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1998,454:903-905.
[10] 于德介,杨宇. 机械故障诊断的 Hilbert-Huang 变换方法[M]. 北京:科学出版社,2006:67-69. YU D J,YANG Y. Mechanical fault diagnosis of the Hilbert- Huang transform method[M]. Beijing:Science Press,2006: 67-69.
[11] HUANG N E,WU M L,QU W,et al. Applications of Hilbert-Huang transform to non‐stationary financial time series analysis[J]. Applied Stochastic Models in Business and Industry,2003,19(3):245-248.
[12] 傅祖芸. 信息论[M]. 第3 版. 北京:电子工业出版社,2013: 78-82. FU Z Y. Information theory[M]. 3rd ed. Beijing:Electronic Industry Press,2013:78-82.
[1]周颖涛 周绍骑 晁文胜 张少波.基于 HHT 时-频熵的声发射管道泄漏诊断[J].油气储运,2016,35(预出版):1.
ZHOU Yingtao,ZHOU Shaoqi,CHAO Wensheng,et al.Acoustic emission pipeline leakage diagnosis based on time-frequency entropy of HHT[J].Oil & Gas Storage and Transportation,2016,35(3):1.
收稿日期:2014-12-21;改回日期:2015-5-14。
作者简介:周颖涛,男,在读硕士生,1988 年生,2011 年毕业于中国人民解放军后勤工程学院油料储运自动化专业,现主要从事油气储运及自动化方向的研究。地址:重庆市沙坪坝区大学城,401311。电话:023-86736516,Email:airazor@qq.com