版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
基于含煤粉的煤层气管道管流数值模拟与分析
Numerical simulation and analysis of pipe flow based on CBM pipelinew ith pulverized coal
煤层气开发过程中,微细的颗粒随气流进入集输管网。颗粒的存在使管流形成气固两相流动,影响管路特性。采用模拟软件针对直管段及水平弯管进行气固两相流数值模拟,对管道系统的特性、操作条件和物料性质等影响气固两相流压力损失的主要因素进行了探讨,对连续相速度和压力分布特性以及颗粒运动轨迹进行了分析,得到气固两相流动的压力场、速度场分布,颗粒在管内的分布情况和运动轨迹,以及不同工况条件下的系统阻力和颗粒沉积分布规律,并结合煤层气现场含尘情况进行了数值模拟分析,结果表明:煤层气管道管流属于低浓度气固两相流,与纯气相单相流相比,颗粒引起的单位管长压降增幅低于2%。
During the development of Coal Bed Methane(CBM),very small particles will enter into the gathering pipe network with gas flow.The existence of particles will result in gas-solid two-phase flow in the pipe,which will affect the pipe characteristics.Gas-solid two-phase flow numerical simulation for the straight pipe and horizontal elbow is conducted with software,the main factors affecting the pressure loss of gas-solid two-phase flow including pipe system characteristics, operation conditions and properties of material are discussed and the speed and pressure distribution characteristics of continuous phase and particle motion trajectory are analyzed.The distribution of pressure field and velocity field of gas-solid two-phase flow and the distribution of particles in pipe and their motion trajectory are obtained as well as the systematic resistance and sedimentation distribution law of particles under different working conditions.This paper carries out numerical simulation analysis according to the dust in CBM pipe on the spot and the result shows that the flow of CBM pipe belongs to low concentration gas-solid two-phase flow and the increase in pressure drop amplitude per pipe length caused by the particles is lower than 2%compared with pure gas phase flow.(7 Figures,1 Table,12 References)
[1]钱伯章, 朱建芳.世界非常规天然气资源和利用进展[J].天然气与石油, 2007, 2 (25) : 28-32.
QIAN B Z,ZHU J F. Non-regular natural gas resources in the world and utilization progress[J]. Natural Gas and Oil, 2007, 2 (25):28-32.
[2]廖永远,罗东坤.非常规天然气资源开发的地面工程问题[J].油气田地面工程, 2012, 31 (11) : 1-3.
LIAO Y Y,LUO D K. Issues in surface engineering for unconventional natural gas resource development[J]. Oil-Gasfield Surface Engineering, 2012, 31 (11):1-3.
[3]宋晓丹,孔令峰,洪保民,等. 我国煤层气产业发展政策现状分析与发展建议[J].天然气工业, 2013, 33 (2) : 1-6.
SONG X D,KONG L F,HONG B M,et al. The status quo of policies and the proposals for the development of coalbed methane gas industry in China[J]. Natural Gas Industry, 2013, 33 (2):1-6.
[4]张公社,田文涛,陶杉. 煤层气储层煤粉运移规律试验研究[J].石油天然气学报, 2011, 33 (9) : 105-108.
ZHANG G S,TIAN W T,TAO S. Experimental research of coal grain migration rules of coalbed methane[J]. Journal of Oil and Gas Technology, 2011, 33 (9):105-108.
[5]刘升贵,贺小黑, 李惠芳.煤层气水平井煤粉产生机理及控制措施[J].辽宁工程技术大学学报 (自然科学版) , 2011 (4) : 508-512.
LIU S G,HE X H,LI H F. Production mechanism and control measures of coal powder[J]. Journal of Liaoning Technical University (Natural Science), 2011 (4):508-512.
[6]李晓平,李杰,宫敬,等. 煤层气采气管道压降特性试验[J]. 油气储运, 2013, 32 (12) : 1276-1279.
LI X P,LI J,GONG J,et al. Tests on pressure drop characteristics of coal bed gas flowline[J]. Oil & Gas Storage and Transportation, 2013, 32 (12):1276-1279.
[7]刘翠伟,李玉星,李雪洁,等. 基于 CFD 模拟的输气管道阀门流噪声仿真[J].油气储运, 2012, 31 (9) : 657-662.
LIU C W,LI Y X,LI X J,et al. CFD analog-based valve flow noise simulation of gas pipeline[J]. Oil & Gas Storage and Transportation, 2012, 31 (9):657-662.
[8]贺滕,王维斌,赵弘,等. 基于 FLUENT 管内封堵器周围流场的数值模拟[J].油气储运, 2013, 32 (6) : 615-619.
HE T,WANG W B,ZHAO H,et al. Fluent-based numerical simulation of the flow field around the plugging tools[J]. Oil & Gas Storage and Transportation, 2013, 32 (6):615-619.
[9]孙晨,陈凌珊,汤晨旭. 气固两相流模型在流场分析中的研究进展[J].上海工程技术大学学报, 2011, 25 (1) : 16-21.
SUN C,CHEN L S,TANG C X. Study and development of gas-solid two-phase flow model in flow field analysis[J]. Journal of Shanghai University of Engineering Science, 2011, 25(1):16-21.
[10] 谢龙汉,赵新宇,张炯明. ANSYS CFX 流体分析及仿真[M].北京:电子工业出版社, 2012.
XIE L H,ZHAO X Y,ZHANG J M. ANSYS CFX fluid analysis and simulation[M]. Beijing: Publishing House of Electronics Industry, 2012.
[11]HONG J, ZHU J X.Effect of pipe orientation on dense-phase transport I:Critical angle in inclined upflow[J].Powder Technology, 1997, 91(5):115-122.
[12]HIROTA M, SOGO Y, MARUTANI T, et al.Effect of mechanical properties of powder on pneumatic conveying in inclined pipe[J].Powder Technology, 2002, 122(1):150-155.
[1]刘牧.鄂东气田保德区块产能建设工程线路勘察[J].油气储运,2015,34(12):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
LIU Mu.Pipeline route survey for productivity building projects in Block Baode, Eastern Ordos Gasfield[J].Oil & Gas Storage and Transportation,2015,34(4):1355.[doi:10.6047/j.issn.1000-8241.2015.12.021]
[2]何国玺 梁永图 方利民 任玉鸿 肖俏.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(预出版):1.
HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[3]陈仕林 孙兆虎 宫敬.煤层气小型撬装液化装置工艺流程的优化[J].油气储运,2016,35(预出版):1.
CHEN Shilin,SUN Zhaohu,GONG Jing.Optimization of small-scale skid-mounted liquefaction process for coalbed methane[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[4]陈仕林 齐建波 周军 宫敬.煤层气田地面集输技术进展[J].油气储运,2016,35(预出版):1.
CHEN Shilin,QI Jianbo,ZHOU Jun,et al.Progresses in surface gathering techniques in coal-bed methane (CBM) fields[J].Oil & Gas Storage and Transportation,2016,35(4):1.
[5]陈仕林,齐建波,周军,等.煤层气田地面集输技术进展[J].油气储运,2015,34(12):1276.[doi:10.6047/j.issn.1000-8241.2015.12.005]
CHEN Shilin,QI Jianbo,ZHOU Jun,et al.Progresses in surface gathering techniques in coal-bed methane (CBM) fields[J].Oil & Gas Storage and Transportation,2015,34(4):1276.[doi:10.6047/j.issn.1000-8241.2015.12.005]
[6]陈仕林,孙兆虎,宫敬.煤层气小型撬装液化装置的优化[J].油气储运,2016,35(5):542.[doi:10.6047/j.issn.1000-8241.2016.05.018]
CHEN Shilin,SUN Zhaohu,GONG Jing.Optimization of small-scale skid-mounted liquefaction device for coalbed methane[J].Oil & Gas Storage and Transportation,2016,35(4):542.[doi:10.6047/j.issn.1000-8241.2016.05.018]
[7]何国玺,梁永图,方利民,等.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(6):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(4):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
[8]孙晓阳,曹学文,谢振强,等.直接模拟蒙特卡罗方法在CFD冲蚀预测中的应用[J].油气储运,2021,40(02):192.[doi:10.6047/j.issn.1000-8241.2021.02.011]
SUN Xiaoyang,CAO Xuewen,XIE Zhenqiang,et al.Application of Direct Simulation Monte Carlo method in CFD-based erosion prediction[J].Oil & Gas Storage and Transportation,2021,40(4):192.[doi:10.6047/j.issn.1000-8241.2021.02.011]
[9]王森,朱丽云,王振波,等.弯头间连接管长对π 形管冲蚀影响的数值模拟[J].油气储运,2021,40(11):1285.[doi:10.6047/j.issn.1000-8241.2021.11.012]
WANG Sen,ZHU Liyun,WANG Zhenbo,et al.Numerical simulation on effect of connection pipe length between elbows on erosion of π-shaped pipeline[J].Oil & Gas Storage and Transportation,2021,40(4):1285.[doi:10.6047/j.issn.1000-8241.2021.11.012]
收稿日期:2013-5-27;改回日期:2013-10-16。
基金项目:国家科技重大专项课题资金资助“煤层气田集输系统优化技术”,2011ZX05039-002。
作者简介:周军,在读博士生,1987年生,2010年毕业于中国石油大学(北京)油气储运工程专业,现主要从事煤层气田集输系统模拟与优化技术研究。Tel:13811501406,Email:zhoujuncup@126.com