网站版权@2014 《油气储运》杂志社 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
在研究氢脆发生机理及损伤机制时,常采用慢应变速率拉伸试验、疲劳寿命试验等手段,以力学性能、疲劳寿命等为指标衡量金属的氢脆敏感性。对于典型管线钢材料,其在不足5 MPa的氢气压力下,或在氢气体积分数10%的掺氢天然气环境中,就已在慢应变速率拉伸等试验中表现出明显的韧性下降、裂纹加速扩展等氢损伤特征。为模拟钢在氢气环境中服役,试验中常采用气相充氢及电化学充氢方法,前者能够模拟多种气相对管线钢氢脆的作用,后者能够快速模拟管线钢长时间服役后氢原子的渗透情况。针对氢脆过程及机理总结并分析了3种主要的氢脆防控技术:①调控管线钢材料及加工工艺,优化其微观组织,增加扩散速率,减弱氢原子聚集现象;②引入气体抑制剂,通过竞争吸附的方法减缓氢分子在材料表面的吸附;③增设管道内涂层,使氢气和管线钢基体金属隔离。并基于此提出了进一步优化管道氢脆防控技术的建议。
In view of damage caused by hydrogen embrittlement, some performances of the pipeline steel such as mechanical properties and fatigue life are used as indexes to measure the hydrogen embrittlement sensitivity of metals through slow strain rate tensile test and fatigue life test. For typical pipeline steels, there are obvious damage features caused by hydrogen such as toughness reduction and fracture propagation when hydrogen pressure ≤5 MPa, or the volume of hydrogen in H2-doped natural gas accounts for 10 vol.%. Two common charging method for hydrogen compatibility test, namely gas-phase and electrochemical charging, are compared in this paper. The former can simulate the effect of various gas phases on pipeline steels, and the latter can quickly obtain the penetration situation of hydrogen atoms after long-term service of pipeline steel. Main hydrogen embrittlement prevention technologies are summarized in this paper: (1) Control material and processing technology of pipeline steel and optimize the microstructure; (2) introduce gas inhibitors, retard the attachment of hydrogen molecules on the steel surface through the mechanical of competitive adsorption; (3) add pipeline internal coating, isolate hydrogen and pipeline steel matrix.
[1]付安庆,吕乃欣,白真权,等.交流杂散电流对长输管线钢腐蚀行为的影响[J].油气储运,2014,33(7):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
FU Anqing,LYU Naixin,BAI Zhenquan,et al.Impacts of AC stray current on the corrosion behavior of pipe steel for long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(10):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
[2]郭磊,姜珊,彭常飞,等.X80 与X100 级管线钢裂纹扩展模拟分析[J].油气储运,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
GUO Lei,JIANG Shan,PENG Changfei,et al.A simulation analysis of crack growth for X80 and X100 pipeline steels[J].Oil & Gas Storage and Transportation,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
[3]樊学华,李向阳,董磊,等.国内抗大变形管线钢研究及应用进展[J].油气储运,2015,34(3):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
FAN Xuehua,LI Xiangyang,DONG Lei,et al.Progress in research and application of pipeline steels with high deformation resistance in China[J].Oil & Gas Storage and Transportation,2015,34(10):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
[4]张冬娜,戚东涛,邵晓东,等.复合材料增强管线钢管结构设计[J].油气储运,2017,36(10):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
ZHANG Dongna,QI Dongtao,SHAO Xiaodong,et al.Structural design of composite reinforced line pipe[J].Oil & Gas Storage and Transportation,2017,36(10):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
[5]李玉星,张睿,刘翠伟,等.掺氢天然气管道典型管线钢氢脆行为[J].油气储运,2022,41(06):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
LI Yuxin,ZHANG Rui,LIU Cuiwei,et al.Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(10):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
[6]刘宇,张立忠,高维新.管线钢的历史沿革及未来展望[J].油气储运,2022,41(12):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
LIU Yu,ZHANG Lizhong,GAO Weixin.Historical development and future prospects of pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(10):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
[7]任鹏炜,唐兴颖,覃祖安,等.深海环境因素对管线钢腐蚀行为影响研究进展[J].油气储运,2023,42(05):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
REN Pengwei,TANG Xingying,QIN Zu&apos,et al.Research progress of the influence of deep-sea environment factors on corrosion behavior of pipeline steel[J].Oil & Gas Storage and Transportation,2023,42(10):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
[8]苟金鑫,聂如煜,邢潇,等.临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型[J].油气储运,2023,42(07):754.[doi:10.6047/j.issn.1000-8241.2023.07.004]
GOU Jinxin,NIE Ruyu,XING Xiao,et al.Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect[J].Oil & Gas Storage and Transportation,2023,42(10):754.[doi:10.6047/j.issn.1000-8241.2023.07.004]
[9]杜建伟 明洪亮 王俭秋.输氢管道氢脆研究现状及进展 [J].油气储运,2023,42(10):1.
DU Jianwei,MING Hongliang,WANG Jianqiu.Research status and progress of hydrogen embrittlement of hydrogen pipelines [J].Oil & Gas Storage and Transportation,2023,42(10):1.