版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
根据基于应变与基于可靠性的两种管道设计新方法的工程需要,对我国油气管道面临的断层、 采空、冻土、滑坡等常见地质灾害类型及其土壤位移模式进行了分类总结。以断层作用下管道设计 应变计算的有限元分析力学模型及设计应变经验公式为基础,将其推广到采空、冻土、滑坡等其他地 质灾害类型的研究中,提出简化的管道地质灾害综合位移模型及管道设计应变计算模型,模型将地 质灾害位移类比为水平面和垂直面内的断层位移形式,从而衍生出其他地质灾害形式管道应变计算 方法。该方法计算精度高、效率高、适用性广,特别是满足了多种地质灾害作用下油气管道可靠性的 设计需要。
To meet the engineering requirements of two new pipeline design methods (i.e., the strain-based design method and the reliability-based design method), the common geological hazards (e.g. faults, mining subsidence, frozen soil and landslide) encountered by oil and gas pipelines were summarized and their soil displacement forms were classified. Then, a simplified geological hazard displacement model and a pipeline design strain calculation model were proposed by generalizing the mechanics model based on finite element analysis and the empirical formula for calculating the design strain of pipelines under the effect of faults to the other geological hazards, e.g. mining subsidence, frozen soil and landslide. In this model, the displacement of the geological hazards is regarded as the analog of fault displacement in vertical or horizontal plane. And as a result, the calculation method for pipeline strain subject to other geological hazards was derived. With the advantages of high accuracy, high efficiency and wide applicability, the proposed method is especially applicable to the reliability-based design of oil and gas pipelines under the effect of various geological hazards.
[1] 刘啸奔,张宏,李勐,等. 断层作用下埋地管道应变分析方法研 究进展[J]. 油气储运,2016, 35(8):799-807.
LIU X B,ZHANG H,LI M,et al. Research progress of strain analysis methods for buried pipelines under faulting process[J]. Oil & Gas Storage and Transportation,2016, 35(8):799-807.
[2] LIU X B,ZHANG H,LI M,et al. Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting[J]. Journal of Natural Gas Science and Engineering,2016, 33:378-387.
[3] TRIFONOV O V,CHERNIY V P. A semi-analytical approach to a nonlinear stress-strain analysis of buried steel pipelines crossing active faults[J]. Soil Dynamics and Earthquake Engineering,2010, 30(11):1298-1308.
[4] TRIFONOV O V. Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects[J]. Journal of Pipeline System Engineering and Practice,2015, 6 (1):1-10.
[5] ZHENG W,ZHANG H,LIU X B,et al. Contrastive study on finite element models of high-strength pipelines crossing active faults[J]. Materials Science Forum,2016,850:957-964.
[6] JALALI H H,ROFFEI F R,ATTARI N K A,et al. Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines[J]. Soil Dynamics and Earthquake Engineering,2016, 86: 1-14.
[7] ROFFOEI F R,JALALI H H,ATTARI N K A,et al. Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting[J]. Canadian Journal of Civil Engineering,2015, 42(3):178-189.
[8] HA D,ABDOUN T K,SYMANSSYMANS M D,et al. Buried high-density polyethylene pipelines subjected to normal and strike-slip faulting-a centrifuge investigation[J]. Canadian Journal of Civil Engineering,2008, 45(12):1733-1742.
[9] JOSHI S,PRASHANT A,DEB A,et al. Analysis of buried pipelines subjected to reverse fault motion[J]. Soil Dynamics and Earthquake Engineering,2011, 31(7):930-940.
[10] 韩银杉,张宏. 走滑断层作用下管道应变解析计算方法的适用 性[J]. 油气储运,2016, 35(12):1329-1336.
HAN Y S,ZHANG H. Applicability of analytical calculation methods on the pipeline strain under the effect of strike-slip fault[J]. Oil & Gas Storage and Transportation,2016, 35(12): 1329-1336.
[11] 刘爱文,胡聿贤,赵凤新,等. 地震断层作用下埋地管线壳有限 元分析的等效边界方法[J]. 地震学报,2004(增刊 1):150-156.
LIU A W,HU Y X,ZHAO F X,et al. An equivalent-boundary method for the shell analysis of buried pipelines under fault movement[J]. Acta Seismologica Sinica,2004(S1):150-156.
[12] RAHMAN M A,TANIYAMA H. Analysis of a buried pipeline subjected to fault displacement:A DEM and FEM study[J]. Soil Dynamics and Earthquake Engineering,2015, 71: 49-62.
[13] WU K,ZHANG H. Strain analysis of buried HDPE pipeline under reverse fault displacement[C]. Beijing:The 6th World Conference on Safety of Oil and Gas Industry,2016:339-343.
[14] LIU X B,ZHANG H,LI M,et al. On the effect of trench size on the strain behavior of buried steel pipeline at strike-slip fault crossings[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(18):5947-5956.
[15] SABERI M,BEHNAMFAR F,VAFAEIAN M. A semianalytical model for estimating seismic behavior of buried steel pipes at bend point under propagating waves[J]. Bulletin of Earthquake Engineering,2013, 11:1373-1402.
[16] SHOKOUHI S K S,DOLATSHAH A,GHOBAKHLOO E. Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach[J]. Earthquakes and Structures, 2013(5):417-438.
[17] 刘啸奔,陈严飞,张宏,等. 受压时跨断层 X80 管道设计应变研 究[J]. 天然气工业,2014, 34(12):123-130.
LIU X B,CHEN Y F,ZHANG H,et al. Prediction on the design strain of the X80 steel pipelines across active faults under stress[J]. Natural Gas Industry,2014, 34(12):123-130.
[18] LIU X B,ZHANG H,HAN Y S,et al. A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings[J]. Journal of Natural Gas Science and Engineering,2016,32: 465-475.
[19] 张宏,崔红升. 基于应变的管道强度设计方法的适用性[J]. 油 气储运,2012, 31(12):952-954.
ZHANG H,CUI H S. The applicability of strain-based pipeline strength design method[J]. Oil & Gas Storage and Transportation,2012, 31(12):952-954.
[20] NESSIM M,ZHOU W,ZHOU J,et al. Reliability based design and assessment for location-specific failure threats with application to natural gas pipelines[J]. Journal of Pressure Vessel Technology,2009,131(4):951-956.
[1]黄春芳 陈燕 周芳 黄月 吴州阳 杨松 王自发. 石油天然气管道站内管道爆破吹扫[J].油气储运,2012,31(12):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
Huang Chunfang,Chen Yan,Zhou Fang,et al. Bursting purge method in stations of oil and gas pipeline[J].Oil & Gas Storage and Transportation,2012,31(1):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
[2]戴联双,汤长江,冯治中,等.油气管道恐怖袭击风险评估方法与应用[J].油气储运,2011,30(05):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
Dai Lianshuang,Tang Changjiang,Feng Zhizhong,et al.Risk assessment methodology and application for oil and gas pipelines’ terrorist attack[J].Oil & Gas Storage and Transportation,2011,30(1):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
[3]王乾坤,张争伟,石悦,等.埋地油气管道并行敷设技术发展现状[J].油气储运,2011,30(01):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
Wang Qiankun,Zhang Zhengwei,Shi Yue,et al.Development status of the parallel laying technology in underground oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(1):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
[4]马伟平,贾子麒,赵晋云,等.美国油气管道法规和标准体系的管理模式[J].油气储运,2011,30(01):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
Ma Weiping,Jia Ziqi,Zhao Jinyun,et al.Oil and gas pipeline eegulations and management mode of standard system in America[J].Oil & Gas Storage and Transportation,2011,30(1):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
[5]李鹤林.油气管道失效控制技术[J].油气储运,2011,30(06):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
Li Helin.Failure control technique of oil & gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(1):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
[6]荆宏远,郝建斌,陈英杰,等.管道地质灾害风险半定量评价方法与应用[J].油气储运,2011,30(07):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
Jing Hongyuan,Hao Jianbin,Chen Yingjie,et al.Technique and application of geologic hazard risk semi-quantitative assessment of pipeline[J].Oil & Gas Storage and Transportation,2011,30(1):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
[7]陈敬和.管道外腐蚀直接评价技术[J].油气储运,2011,30(07):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
Chen Jinghe.Direct assessment technology of pipeline external corrosion[J].Oil & Gas Storage and Transportation,2011,30(1):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
[8]吴琋瑛.光缆与油气管道同沟敷设应用实践[J].油气储运,2011,30(07):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
Wu Xiying.Technique application of laying in one ditch for fiber cable and oil or gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(1):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
[9]焦中良,李志文,李志勇,等.油气管道波动压力的雨流计数与分析[J].油气储运,2011,30(08):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
Jiao Zhongliang,Li Zhiwen,Li Zhiyong,et al.Rain-flow counting analysis of the fluctuation pressure for oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(1):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
[10]樊文斌,罗自治,张策.管内高压封堵器的研制[J].油气储运,2011,30(08):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
Fan Wenbin,Luo Zizhi,Zhang Ce.Development of high-pressure pipeline isolation plug[J].Oil & Gas Storage and Transportation,2011,30(1):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
[11]张宏 刘啸奔.地质灾害作用下油气管道设计应变计算模型[J].油气储运,2016,35(预出版):1.
ZHANG Hong,LIU Xiaoben.Design strain calculation model for oil and gas pipelines subject to geological hazards[J].Oil & Gas Storage and Transportation,2016,35(1):1.
收稿日期:2016-12-22;修回日期:2016-12-26;编辑:杜娟
基金项目:中国石油天然气股份有限公司重大科技专项“第三代 大输量天然气管道工程关键技术研究”,2012E-2801-01。
作者简介:张宏,男,1963 年生,教授,2003 年博士毕业于中国石油大学(北京)机械设计及理论专业,现主要从事工程力学教学和石油装备的科研工作。地址:北京市昌平区府学路 18 号,102249。电 话:13601034401,Email:hzhang@cup.edu.cn
通讯作者:刘啸奔,男,1991 年生,在读博士生,2012 年毕业于中国石油大学(北京)安全工程专业,现主要从事油气装备失效分析与完整性管理的相关研究。地址:北京市昌平区府学路 18 号,102249。 电话:18910191575,Email:liuxiaoben1991@126.com