版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
PNS
; dynamic simulation; GIS; coalbed methane; gathering pipeline network; dispatching樊北煤层气因其低压、高密、大起伏、小流量的特征,使得其集输管网系统结构复杂、压力敏感、 流动参数变化细微,工艺分析和调度管理工作困难。以 PNS(Pipeline Network Simulation)管网仿 真软件为核心,结合樊北煤层气集输管网三维地理信息系统、SCADA 系统及实时数据库,描述了樊 北煤层气集输管网动态仿真调度系统的构架,阐述了动态仿真模型、模型自适应及在线仿真的实现 过程,讨论了动态仿真与 GIS 地理信息系统交互式作用及自动建模和动态查询展示的方法和过程, 实现了动态仿真调度系统在线分析和跟踪煤层气管网系统的流动,量化集输管网系统运行状态并分 析评价指标,直观搜索、查询及展示系统中各个部分的运行参数,为大型、复杂煤层气地面集输管网 系统的调度管理提供及时、准确的分析手段和决策依据,协助调度方案的决策和实施。将系统应用 于樊 9 集气站煤层气集输管网,得到整个管网系统的流动状况,可为调度管理决策提供及时、准确的 量化数据。
The coalbed methane (CBM) in northern Fanzhuang is characterized by low pressure, high density, large topographic undulation and low flow rate. To deal with these characteristics, its gathering pipeline network is complicated with complex structure, sensitive pressure and subtle variation of flow parameters, so its technological analysis and dispatching management are difficult. In this paper, the framework of dynamic simulation dispatching system for the CBM gathering pipeline network in northern Fanzhuang was described with the PNS Pipeline Simulation Software as the core, combined with its 3D geographic information system (GIS), SCADA system and real-time database. Then, the dynamic simulation model, the model selfadaption and online simulation process were illustrated. The interaction between the dynamic simulation and the GIS system was discussed. The methods and process of automatic modelling and dynamic inquiry & display were investigated. It is shown that this dynamic simulation dispatching system can be used to online analyze and track the flow of CBM pipeline network, quantify the operation state of gathering pipeline network, analyze the evaluation index and search, inquire and display intuitively the operation parameters of each part, so as to provide in time the accurate analysis methods and decision basis for the dispatching and management of large-scale complex CBM ground gathering pipeline network and coordinate the decision and implementation of the dispatching programs. The system was applied to the CBM gathering pipeline network of Fan 9 gas gathering station and the flow conditions of the overall system was obtained. It can provide timely and accurate quantified data for the decision of dispatchning management.
[1] 王寿喜,曾自强. 天然气管网静动态仿真[J]. 天然气工业,1995, 15(2):59-63.
WANG S X,ZENG Z Q. Static and dynamic emulation of natural gas pipeline network[J]. Natural Gas Industry,1995,15(2): 59-63.
[2] WANG S,CARROLI J J. Leak detection for gas and liquid pipelines by online modeling[J]. SPE Projects,Facilities & Construction,2007, 2 (2):1-9. [
3] 王寿喜,曾自强 . 管网稳态分析[J]. 石油学报,1987, 8 (4): 117-123.
WANG S X,ZENG Z Q. Node pressure model for network steady-state analysis[J]. Acta Petrolei Sinica,1987, 8 (4): 117-123.
[4] KE S L,TI H C. Transient analysis of isothermal gas flow in pipeline network[J]. Chemical Engineering Journal,2000, 76(2): 169-177.
[5] ABRAHAM D W,MOHD A M. Simulation model for natural gas transmission pipeline network system[J]. Simulation Modelling Practice and Theory,2011, 19(1):196-212.
[6] MAPUNDI K B,MICHAEL H,AXEL K. Gas flow in pipeline networks[J]. Networks and Heterogeneous Media,2006, 1 (1): 41-56.
[7] 田立平. 数学物理方程及其反问题研究[M]. 北京:机械工业出 版社,2010: 79-84.
TIAN L P. The reverse problems of the equations of the mathematical physics[M]. Beijing:Mechanical Engineering Publisher,2010: 79-84.
[8] 王寿喜,王杰. 长输管道自动化[M]. 北京:石油工业出版社, 1996: 48-67.
WANG S X,WANG J. Long-distance pipeline automation[M]. Beijing:Petroleum Industry Press,1996: 48-67.
[9] HERBERT L S. Iterative solution of implicit approximations of multidimensional partial differential equations[J]. SIAM Journal on Numerical Analysis,1968, 5 (3):530-558.
[10] TJOA I B,BIEGLER L T. Simultaneous solution and optimization strategies for parameter estimation of differentialalgebraic equation systems[J]. Industrial & Engineering Chemistry Research,1991, 30(2):376-385.
[11] ZAHRA E,KIMBERLEY B M. Mean square error based method for parameter ranking and selection to obtain accurate predictions at specified operating conditions[J]. Industrial & Engineering Chemistry Research,2014, 53(14):6033-6046.
[12] MORENO M S,FEDERICO E A,DIAZ M S. Dynamic modeling and parameter estimation for unit operations in lignocellulosic bioethanol production[J]. Industrial & Engineering Chemistry Research,2013, 52(11):4146-4160.
[13] PAVEL R. Using GIS information to build pipeline model[C]. Palm Springs:PSIG Annual Meeting,2004:SIG-04B4.
[14] TAO T,MELISSA W. GIS simulation and visualization of community evacuation vulnerability in a connected geographic network model[J]. Middle States Geographer,2005, 38: 22-30.
[15] BRAD B. Maps to models-building distribution system models from GIS or CAD data[C]. Napa Valley:Pipeline Annual Meeting,2011:PSIG-1105.
[16] CLAY N,MICHAEL L. Integrating GIS with pipeline simulation software[C]. Galveston:PSIG Annual Meeting, 2009:PSIG-0908.
[17] TAO T,XIN K L,LIU S Q,et al. A pipe network skeleton method based on GIS network analysis technologies[C]. Shanghai:ICPTT,2009: 18-21.
[18] 郑绵彬,陈国华. ArcGIS 实现三维燃气管网仿真的研究[J]. 计 算机工程与设计,2008, 29(7):1824-1827.
ZHENG M B,CHEN G H. Study on 3D simulation of gaspipelines applying ArcGIS[J]. Computer Engineering and Design,2008, 29(7):1824-1827.
[19] JANKOWSKI P,RICHARD L. Integration of GIS-based suitability analysis and multicriteria evaluation in a spatial decision support system for route selection[J]. Environment and Planning B:Planning and Design,1994, 21:323-340.
[20] CHMILAR W,POISSANT G. Data management and exchange in a pipeline simulation environment[C]. Palm Springs:PSIG Annual Meeting,2004:PSIG-04B2.
[1]郑志炜 吴长春 蔡莉 张楠.输气管道末段储气能力稳态计算法偏差分析[J].油气储运,2012,31(7):533.[doi:10.6047/j.issn.1000-8241.2012.07.013]
Zheng Zhiwei,Wu Changchun,Cai Li,et al.Deviation analysis of steady-state calculation for gas inventory capability in terminal pipe[J].Oil & Gas Storage and Transportation,2012,31(1):533.[doi:10.6047/j.issn.1000-8241.2012.07.013]
[2]王冠培 苏清博 郭开华 李宁 皇甫立霞.多气源混输管网的供气方案[J].油气储运,2013,32(10):1063.[doi:10.6047/j.issn.1000-8241.2013.10.006]
Wang Guanpei,Su Qingbo,Guo Kaihua,et al.Gas supply program for pipeline network with multiple gas sources[J].Oil & Gas Storage and Transportation,2013,32(1):1063.[doi:10.6047/j.issn.1000-8241.2013.10.006]
[3]赵小兵 康正凌 祝文倩 李江江 虞鹏程.基于AQWA与OrcaFlex的海上漂浮软管输油系统仿真[J].油气储运,2020,39(01):1.
ZHAO Xiaobing,KANG Zhengling,ZHU Wenqian,et al.Simulation of offshore floating hose oil transportation system based on AQWA and OrcaFlex[J].Oil & Gas Storage and Transportation,2020,39(1):1.
[4]赵小兵 康正凌 祝文倩 李江江 虞鹏程.基于AQWA 与OrcaFlex 的海上漂浮软管输油系统仿真[J].油气储运,2020,39(05):582.[doi:10.6047/j.issn.1000-8241.2020.05.015]
ZHAO Xiaobing,KANG Zhengling,ZHU Wenqian,et al.Simulation of offshore floating hose oil transportation system based on AQWA and OrcaFlex[J].Oil & Gas Storage and Transportation,2020,39(1):582.[doi:10.6047/j.issn.1000-8241.2020.05.015]
[5]王寿喜 郭简 张廷廷 梅永贵 王佳.樊北煤层气集输管网动态仿真调度系统[J].油气储运,2016,35(预出版):1.
WANG Shouxi,GUO Jian,ZHANG Tintin,et al.Dynamic simulation dispatching system for the CBM gathering pipeline network in northern Fanzhuang[J].Oil & Gas Storage and Transportation,2016,35(1):1.
收稿日期:2016-10-21;修回日期:2016-11-03;编辑:李在蓉
基金项目:国家自然科学杰出青年基金项目“传热传质学”, 51325603。
作者简介:宇波,男,1972 年生,教授,1999 年博士毕业于西安交通大学工程热物理专业,现主要从事油气储运研究工作。地址:北京市大兴区黄村镇清源北路19 号,102617。电话:010-81292805, Email:yubobox@vip.163.com