[1]刘翠伟,赵兰琦,张睿,等.应力状态下管线钢的氢脆敏感性[J].油气储运,2025,44(04):1-12.
 LIU Cuiwei,ZHAO Lanqi,ZHANG Rui,et al.Study on hydrogen embrittlement susceptibility of pipeline steel under stress[J].Oil & Gas Storage and Transportation,2025,44(04):1-12.
点击复制

应力状态下管线钢的氢脆敏感性

参考文献/References:

[1] LORENZONI I, BENSON D. Radical institutional change in environmental governance: explaining the origins of the UK Climate Change Act 2008 through discursive and streams perspectives[J]. Global Environmental Change, 2014, 29: 10-21. DOI: 10.1016/j.gloenvcha.2014.07.011.
[2] DAVIS S J, LEWIS N S, SHANER M, AGGARWAL S, ARENT D, AZEVEDO I L, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. DOI: 10.1126/science.aas9793.
[3] Docslib.org. Hydrogen infrastructure–the pillar of energy transition[EB/OL]. [2024-10-08]. https://docslib.org/doc/9054353/hydrogen-infrastructure-the-pillar-of-energy-transition.
[4] European Union Agency for the Cooperation of Energy Regulators. Transporting pure hydrogen by repurposing existing gas infrastructure: overview of existing studies and reflections on the conditions for repurposing[EB/OL]. (2021-07-16)[2024-10-08]. https://www.acer.europa.eu/sites/default/files/documents/Publications/Transporting%20Pure%20Hydrogen%20by%20Repurposing%20Existing%20Gas%20Infrastructure_Overview%20of%20studies.pdf.
[5] ROBLES J O, ALMARAZ S D L, AZZARO-PANTEL C. Chapter 2-Hydrogen supply chain design: key technological components and sustainable assessment[M]//AZZARO-PANTEL C. Hydrogen Supply Chains. London: Academic Press, 2018: 37-79. DOI: 10.1016/B978-0-12-811197-0.00002-6.
[6] KHAN M A, YOUNG C, LAYZELL D B. The techno-economics of hydrogen pipelines[J]. Transition Accelerator Technical Briefs, 2021, 1(2): 1-40.
[7] DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: a review[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21603-21616. DOI: 10.1016/j.ijhydene.2018.09.201.
[8] REITENBACH V, GANZER L, ALBRECHT D, HAGEMANN B. Influence of added hydrogen on underground gas storage: a review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927-6937. DOI: 10.1007/s12665-015-4176-2.
[9] TROIANO A R. The role of hydrogen and other interstitials in the mechanical behavior of metals: (1959 Edward De Mille Campbell Memorial Lecture)[J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557-569. DOI: 10.1007/s13632-016-0319-4.
[10] BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. Metallurgical Transactions, 1972, 3(2): 441-455. DOI: 10.1007/BF02642048.
[11] 陈学东.中国工程院院士陈学东:中国氢能储运装备技术进展[EB/OL].(2022-08-26)[2024-09-30].https://m.gmw.cn/baijia/2022-08/26/35981488.html.
CHEN X D. Chen Xuedong, academician of the CAE member: technical progress of hydrogen energy storage and transportation equipment in China[EB/OL]. (2022-08-26)[2024-09-30]. https://m.gmw.cn/baijia/2022-08/26/35981488.html.
[12] MAHAJAN D, TAN K, VENKATESH T, KILETI P, CLAYTON C R. Hydrogen blending in gas pipeline networks—a review[J]. Energies, 2022, 15(10): 3582. DOI: 10.3390/en15103582.
[13] MELAINA M W, ANTONIA O, PENEV M. Blending hydrogen into natural gas pipeline networks: a review of key issues: NREL/TP-5600-51995[R]. Golden: National Renewable Energy Laboratory, 2013: 页码范围缺失.
[14] XU X S, ZHU M Z, WANG C L, ZHANG J, LIU C W, SONG Y L, et al. Effect of FeCO3 corrosion product scale on hydrogen adsorption and permeation of pipeline steel in gaseous hydrogen-blended natural gas transportation[J]. Corrosion Science, 2024, 229: 111880. DOI: 10.1016/j.corsci.2024.111880.
[15] WANG C L, ZHANG J X, LIU C W, HU Q H, ZHANG R, XU X S, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests[J]. International Journal of Hydrogen Energy, 2023, 48(1): 243-256. DOI: 10.1016/j.ijhydene.2022.09.228.
[16] WANG C L, XU X S, HUA Y, ZHANG R, LIU C W, LUO X M, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen[J]. Corrosion Science, 2024, 227: 111789. DOI: 10.1016/j.corsci.2023.111789.
[17] ZHANG R, YUAN C, LIU C W, WANG C L, XU X S, ZHANG J X, et al. Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel[J]. Engineering Failure Analysis, 2024, 159: 108111. DOI: 10.1016/j.engfailanal.2024.108111.
[18] SHANG J, CHEN W F, ZHENG J Y, HUA Z L, ZHANG L, ZHOU C S, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures[J]. Scripta Materialia, 2020, 189: 67-71. DOI: 10.1016/j.scriptamat.2020.08.011.
[19] ZHANG S, LI J, AN T, ZHENG S Q, YANG K, LV L, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20621-20629. DOI: 10.1016/j.ijhydene.2021.03.183.
[20] MENG B, GU C H, ZHANG L, ZHOU C S, LI X Y, ZHAO Y Z, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7404-7412. DOI: 10.1016/j.ijhydene.2016.05.145.
[21] ZHAO W M, ZHANG T M, ZHAO Y J, SUN J B, WANG Y. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corrosion Science, 2016, 111: 84-97. DOI: 10.1016/j.corsci.2016.04.029.
[22] BECK W, BOCKRIS J O, MCBREEN J, NANIS L. Hydrogen permeation in metals as a function of stress, temperature and dissolved hydrogen concentration[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 290(1421): 220-235. DOI: 10.1098/rspa.1966.0046.
[23] ZHANG T Y, CHU W Y, HSIAO C M. Tetragonal distortion field of hydrogen atoms in iron[J]. Metallurgical Transactions A, 1985, 16(9): 1649-1653. DOI: 10.1007/BF02663020.
[24] NAGAO A, KURAMOTO S, ICHITANI K, KANNO M. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J]. Scripta Materialia, 2001, 45(10): 1227-1232. DOI: 10.1016/S1359-6462(01)01154-X.
[25] XU Z Y, ZHANG P Y, MENG G Z, WANG Y Q, WANG J Y, SHAO Y W, et al. Influence of low tensile stress on the kinetics of hydrogen permeation and evolution behavior in alkaline environment[J]. International Journal of Hydrogen Energy, 2022, 47(79): 33803-33812. DOI: 10.1016/j.ijhydene.2022.07.260.

相似文献/References:

[1]付安庆,吕乃欣,白真权,等.交流杂散电流对长输管线钢腐蚀行为的影响[J].油气储运,2014,33(7):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
 FU Anqing,LYU Naixin,BAI Zhenquan,et al.Impacts of AC stray current on the corrosion behavior of pipe steel for long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(04):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
[2]郭磊,姜珊,彭常飞,等.X80 与X100 级管线钢裂纹扩展模拟分析[J].油气储运,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
 GUO Lei,JIANG Shan,PENG Changfei,et al.A simulation analysis of crack growth for X80 and X100 pipeline steels[J].Oil & Gas Storage and Transportation,2014,33(04):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
[3]樊学华,李向阳,董磊,等.国内抗大变形管线钢研究及应用进展[J].油气储运,2015,34(3):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
 FAN Xuehua,LI Xiangyang,DONG Lei,et al.Progress in research and application of pipeline steels with high deformation resistance in China[J].Oil & Gas Storage and Transportation,2015,34(04):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
[4]张冬娜,戚东涛,邵晓东,等.复合材料增强管线钢管结构设计[J].油气储运,2017,36(10):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
 ZHANG Dongna,QI Dongtao,SHAO Xiaodong,et al.Structural design of composite reinforced line pipe[J].Oil & Gas Storage and Transportation,2017,36(04):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
[5]李玉星,张睿,刘翠伟,等.掺氢天然气管道典型管线钢氢脆行为[J].油气储运,2022,41(06):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
 LI Yuxin,ZHANG Rui,LIU Cuiwei,et al.Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(04):732.[doi:10.6047/j.issn.1000-8241.2022.06.015]
[6]刘方,杨宏伟,邓付洁.掺氢天然气输送用X65管线钢的氢脆行为[J].油气储运,2024,43(03):289.[doi:10.6047/j.issn.1000-8241.2024.03.005]
 LIU Fang,YANG Hongwei,DENG Fujie.Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas[J].Oil & Gas Storage and Transportation,2024,43(04):289.[doi:10.6047/j.issn.1000-8241.2024.03.005]
[7]刘宇,张立忠,高维新.管线钢的历史沿革及未来展望[J].油气储运,2022,41(12):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
 LIU Yu,ZHANG Lizhong,GAO Weixin.Historical development and future prospects of pipeline steel[J].Oil & Gas Storage and Transportation,2022,41(04):1355.[doi:10.6047/j.issn.1000-8241.2022.12.001]
[8]任鹏炜,唐兴颖,覃祖安,等.深海环境因素对管线钢腐蚀行为影响研究进展[J].油气储运,2023,42(05):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
 REN Pengwei,TANG Xingying,QIN Zu&apos,et al.Research progress of the influence of deep-sea environment factors on corrosion behavior of pipeline steel[J].Oil & Gas Storage and Transportation,2023,42(04):492.[doi:10.6047/j.issn.1000-8241.2023.05.002]
[9]杜建伟 明洪亮 王俭秋.输氢管道氢脆研究现状及进展[J].油气储运,2023,42(10):1.
 DU Jianwei,MING Hongliang,WANG Jianqiu.Research status and progress of hydrogen embrittlement of hydrogen pipelines[J].Oil & Gas Storage and Transportation,2023,42(04):1.
[10]王宇辰,吴倩,刘欢,等.管线钢氢相容性测试方法及氢脆防控研究进展[J].油气储运,2023,42(11):1251.[doi:10.6047/j.issn.1000-8241.2023.11.005]
 WANG Yuchen,WU Qian,LIU Huan,et al.Research progress of hydrogen compatibility testing methods and hydrogen embrittlement prevention measures for pipeline steel[J].Oil & Gas Storage and Transportation,2023,42(04):1251.[doi:10.6047/j.issn.1000-8241.2023.11.005]

备注/Memo

收稿日期:2024-11-05;修回日期:2024-12-09;编辑:张腾
基金项目:国家重点研发计划“氢能技术”重点专项“中低压纯氢与掺氢燃气管道系统渗氢扩散机理与相容性研究”,2021YFB4001601。
作者简介:刘翠伟,男,1987年生,教授,2016年博士毕业于中国石油大学(华东)油气储运工程专业,现主要从事天然气及氢气管道安全输送技术研究。地址:山东省青岛市黄岛区长江西路66号,266580。电话:13468286715。Email:20180093@upc.edu.cn

更新日期/Last Update: 2025-02-25