网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] 尹铁,赵弘,张倩,吴婷婷,周伦,王新升.长输油气管道焊接机器人的技术现状与发展趋势[J].石油科学通报,2021,6(1):145-157. DOI:10.3969/j.issn.2096-1693.2021.01.012.
YIN T, ZHAO H, ZHANG Q, WU T T, ZHOU L, WANG X S. Current situation and development of welding robots for long distance oil and gas pipelines[J]. Petroleum Science Bulletin, 2021, 6(1): 145-157.
[2] 帅健,王旭,张银辉,武旭.高钢级管道环焊缝主要特征及安全性评价[J].油气储运,2020,39(6):623-631. DOI:10.6047/j.issn.1000-8241.2020.06.003.
SHUAI J, WANG X, ZHANG Y H, WU X. Main characteristics and safety assessment of girth welds in high grade steel pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(6): 623-631.
[3] 狄彦,帅健,王晓霖,石磊.油气管道事故原因分析及分类方法研究[J].中国安全科学学报,2013,23(7):109-115. DOI:10.16265/j.cnki.issn1003-3033.2013.07.017.
DI Y, SHUAI J, WANG X L, SHI L. Study on methods for classifying oil&gas pipeline incidents[J]. China Safety Science Journal, 2013, 23(7): 109-115.
[4] WANG X, SHUAI J. A calculation method for limit load of the gas pipelines with girth weld surface cracks[J]. Natural Gas Industry B, 2019, 6(5): 481-487. DOI: 10.1016/j.ngib.2019.03.004.
[5] YANG Y, ZHANG H, WU K, CHEN P C, SUI Y L, YANG D, et al. Strain capacity analysis of the mismatched welding joint with misalignments of D 1,422 mm X80 steel pipelines: an experimental and numerical investigation[J]. Journal of Pipeline Science and Engineering, 2021, 1(2): 212-224. DOI: 10.1016/j.jpse.2021.05.002.
[6] YURIOKA N, SUZUKI H. Hydrogen assisted cracking in C-Mn and low alloy steel weldments[J]. International Materials Reviews, 1990, 35(1): 217-249. DOI: 10.1179/imr.1990.35.1.217.
[7] HART P H M, HARRISON P L. Compositional parameters for HAZ cracking and hardening in C-Mn steels[J]. Welding International, 1991, 5(7): 521-536. DOI: 10.1080/09507119109447832.
[8] DEARDEN J. A guide to the selection and welding of low alloy structural steels[J]. Institute of Welding Transactions, 1940, 3: 203.
[9] ARATA Y, MATSUDA F, NAKATA K. Quench hardening and cracking in electron beam weld metal of carbon and low alloy hardenable steels[J]. Transactions of JWRI, 1972, 1(1): 39-51.
[10] ARATA Y, NISHIGUCHI K, OHJI T, KOHSAI N. Weldability concept on hardness prediction (materials, metallurgy, weldability)[J]. Transactions of JWRI, 1979, 8(1): 43-52. DOI: 10.18910/10844.
[11] TERASAKI T. Study of predictive equations of thermal factor and hardness relatated with weld cold cracking[J]. Tetsu-To-Hagane, 1981, 67(16): 2715-2723. DOI: 10.2355/tetsutohagane1955.67.16_2715.
[12] SUZUKI H. A new formula for estimating HAZ maximum hardness in welded steel[J]. Transactions of the Japan Welding Society, 1985, 16(2): 157-164.
[13] YURIOKA N, OKUMURA M, KASUYA T, COTTON H J U. Prediction of HAZ hardness of transformable steels[J]. Metal Construction, 1987, 19(4): 217R-223R.
[14] ZACZEK Z, CWIEK J. Prediction of HAZ hardness in welds of quenched and tempered HSLA steels[J]. Welding Journal, 1993, 72(1): 37-40.
[15] NOLAN D, STERJOVSKI Z, DUNNE D. Hardness prediction models based on HAZ simulation for in-service welded pipeline steels[J]. Science and Technology of Welding and Joining, 2005, 10(6): 681-694. DOI: 10.1179/174329305X65069.
[16] VIGNIER S, BIRO E, HERVÉ M. Predicting the hardness profile across resistance spot welds in martensitic steels[J]. Welding in the World, 2014, 58(3): 297-305. DOI: 10.1007/s40194-014-0116-0.
[17] RAHMAN M, MAURER W, ERNST W, RAUCH R, ENZINGER N. Calculation of hardness distribution in the HAZ of micro-alloyed steel[J]. Welding in the World, 2014, 58(6): 763-770. DOI: 10.1007/s40194-014-0156-5.
[18] FALKENRECK T, KROMM A, BÖLLINGHAUS T. Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel[J]. Welding in the World, 2018, 62(1): 47-54. DOI: 10.1007/s40194-017-0511-4.
[19] KASUYA T, INOMOTO M, OKAZAKI Y, AIHARA S, ENOKI M. HAZ hardness prediction of boron-added steels[J]. Welding in the World, 2021, 65(8): 1609-1621. DOI: 10.1007/s40194-021-01111-5.
[20] HU M J, WANG P, LIN W P, WANG X Y, JI L K. SH-CCT of high-strain pipeline steel X80[J]. Advanced Materials Research, 2012, 472/475: 1179-1182. DOI: 10.4028/www.scientific.net/AMR.472-475.1179.
[21] 褚峰,张继明,张亚运,曲锦波.中俄东线大壁厚X80管线钢的连续冷却相变行为[J].热加工工艺,2020,49(20):146-148. DOI:10.14158/j.cnki.1001-3814.20200735.
CHU F, ZHANG J M, ZHANG Y Y, QU J B. Continuous cooling phase transformation behavior of Sino-Russian east line large wall thickness X80 pipeline steel[J]. Hot Working Technology, 2020, 49(20): 146-148.
[22] 王庆鹏,李午申,陈翠欣.X80钢HAZ相变Leblond模型参数的初步研究[J].焊管,2005,28(3):10-12,16. DOI:10.19291/j.cnki.1001-3938.2005.03.003.
WANG Q P, LI W S, CHEN C X. Study of phase change Leblond model parameter on grade X80 HAZ[J]. Welded Pipe and Tube, 2005, 28(3): 10-12, 16.
[23] 隋永莉,王鹏宇.中俄东线天然气管道黑河—长岭段环焊缝焊接工艺[J].油气储运,2020,39(9):961-970. DOI:10.6047/j.issn.1000-8241.2020.09.001.
SUI Y L, WANG P Y. Girth welding technology used in Heihe-Changling Section of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(9): 961-970.
[24] 陆阳,邵强,隋永莉,冯大勇.大管径、高钢级天然气管道环焊缝焊接技术[J].天然气工业,2020,40(9):114-122. DOI:10.3787/j.issn.1000-0976.2020.09.014.
LU Y, SHAO Q, SUI Y L, FENG D Y. Girth welding technology for large-diameter high steel grade gas line pipes[J]. Natural Gas Industry, 2020, 40(9): 114-122.
[25] ZHAO W M, JIANG W, ZHANG H J, HAN B, JIN H C, GAO Q. 3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J]. Journal of Manufacturing Processes, 2021, 66: 166-178. DOI: 10.1016/j.jmapro.2021.04.009.
[1]王学力 冯庆善 陈昕 燕冰川 宋汉成 张海亮 张存生.螺旋焊缝管道的开裂原因[J].油气储运,2012,31(7):491.[doi:10.6047/j.issn.1000-8241.2012.07.003]
Wang Xueli,Feng Qingshan,Chen Xin,et al.Analysis on cracking causes of spiral welded pipeline[J].Oil & Gas Storage and Transportation,2012,31(05):491.[doi:10.6047/j.issn.1000-8241.2012.07.003]
[2]玄文博,王维斌,贾仕豪,等.中俄东线天然气管道动态退磁实验[J].油气储运,2022,41(03):339.[doi:10.6047/j.issn.1000-8241.2022.03.013]
XUAN Wenbo,WANG Weibin,JIA Shihao,et al.Dynamic demagnetization experiment on China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2022,41(05):339.[doi:10.6047/j.issn.1000-8241.2022.03.013]
[3]刘玉卿,张振永,吴圣思,等.水网地区大口径X80管道环焊缝安全评价[J].油气储运,2023,42(10):1128.[doi:10.6047/j.issn.1000-8241.2023.10.006]
LIU Yuqing,ZHANG Zhenyong,WU Shengsi,et al.Safety assessment on girth welds of large-diameter X80 pipelines in water network area[J].Oil & Gas Storage and Transportation,2023,42(05):1128.[doi:10.6047/j.issn.1000-8241.2023.10.006]
[4]张小强,云泽,蒋庆梅,等.X80M管道全自动焊环焊缝热影响区冷却时间预测模型[J].油气储运,2025,44(06):1.
ZHANG Xiaoqiang,YUN Ze,JIANG Qingmei,et al.Prediction model for cooling time in the heat-affected zone of girth welds in fully automatic welding of X80M pipelines[J].Oil & Gas Storage and Transportation,2025,44(05):1.
基金项目:国家自然科学基金项目“火驱服役环境多场耦合作用下低铬套管钢失效机理研究”,52304013;国家重点研发计划“中俄管道重大风险防控与安全保障关键技术”,2022YFC3070100;中国石油大学(北京)科研基金项目“掺氢管道环焊缝失效机理与评价方法研究”,2462023BJRC005
作者简介:蒋庆梅,女,1986年生,高级工程师,2010年硕士毕业于东北大学材料加工专业,现主要从事油气长输管道工程设计、管材、焊接、检测及标准化等工作。地址:天津市滨海新区第二大街与新城东路交口MSD-B1座大厦,300450。电话:15233166192。Email:316667696@qq.com
通信作者:王昊,男,1991年生,讲师,2019年博士毕业于美国普渡大学航空航天工程专业,现主要从事油气管道结构安全与适用性评价的相关研究。通信地址:北京市昌平区府学路18号中国石油大学(北京),102249。电话:010-89731239。Email:hao.wang.37@cup.edu.cn