网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] 徐学武.海底油气管道内腐蚀分析与防护[J].腐蚀与防护,2014,35(5):500-504.
XU X W. Analysis and protection of internal corrosion for submarine pipelines of oil and gas[J]. Corrosion & Protection, 2014, 35(5): 500-504.
[2] COLE I S, MARNEY D. The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils[J]. Corrosion Science, 2012, 56: 5-16. DOI: 10.1016/j.corsci.2011.12.001.
[3] 王英波,殷振兴,胡浩,唐晓.海洋大气环境中架空管道保温层下腐蚀的调研及防护对策[J].腐蚀与防护,2021,42(7):53-58. DOI:10.11973/fsyfh-202107011.
WANG Y B, YIN Z X, HU H, TANG X. Investigation and protection of corrosion under insulation of overhead pipeline in marine atmospheric environment[J]. Corrosion Science, 2021, 42(7): 53-58.
[4] 骆正山,宋莹莹,毕傲睿.基于GRA-RFR的油气集输管道内腐蚀速率预测[J].材料保护,2020,53(3):95-100. DOI:10.16577/j.cnki.42-1215/tb.2020.03.017.
LUO Z S, SONG Y Y, BI A R. Prediction model of internal corrosion rate in oil and gas gathering pipelines based on GRA-RFR[J]. Materials Protection, 2020, 53(3): 95-100.
[5] 张梁,高源,杨光,李民强.BP神经网络模型的改进及其在海底管道外腐蚀速率预测中的应用[J].安全与环境学报,2023,23(11):3882-3888. DOI:10.13637/j.issn.1009-6094.2022.1608.
ZHANG L, GAO Y, YANG G, LI M Q. Improvement of the BP neural network model and its application in the prediction of the external corrosion rate of submarine pipeline[J]. Journal of Safety and Environment, 2023, 23(11): 3882-3888.
[6] 肖荣鸽,王栋,王勤学.基于ASO-BP神经网络的海底油气管道腐蚀速率预测[J].化学工业与工程,2022,39(6):109-116. DOI:10.13353/j.issn.1004.9533.20216004.
XIAO R G, WANG D, WANG Q X. Prediction of corrosion rate of submarine oil and gas pipelines based on ASO-BP neural network[J]. Chemical Industry and Engineering, 2022, 39(6): 109-116.
[7] ZHI Y J, FU D M, YANG T, ZHANG D W, LI X G, PEI Z B. Long-term prediction on atmospheric corrosion data series of carbon steel in China based on NGBM(1,1) model and genetic algorithm[J]. Anti-Corrosion Methods and Materials, 2019, 66(4): 403-411. DOI: 10.1108/ACMM-11-2017-1858.
[8] 贾海韵,胡丽华,李夏侨,曲志豪,王竹,常炜,等.基于核主成分分析算法的海底管道内腐蚀风险预测[J].腐蚀与防护,2023,44(3):82-87. DOI:10.11973/fsyfh-202303012.
JIA H Y, HU L H, LI X Q, QU Z H, WANG Z, CHANG W, et al. Internal corrosion risk prediction of submarine pipeline based on kernel principal component analysis[J]. Corrosion and Protection, 2023, 44(3): 82-87.
[9] TIAN L, LUO Y. A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 575-596. DOI: 10.1007/s10845-019-01469-w.
[10] HATAMI S, GHADERI-ARDAKANI A, NIKNEJAD-KHOMAMI M, KARIMI-MALEKABADI F, RASAEI M R, MOHAMMADI A H. On the prediction of CO2 corrosion in petroleum industry[J]. The Journal of Supercritical Fluids, 2016, 117: 108-112. DOI: 10.1016/j.supflu.2016.05.047.
[11] 梁昌晶,谢波,刘延庆,刘志娟,郭自强,任春燕,等.基于KPCA-GWO-SVM的埋地管道土壤腐蚀速率预测[J].油气储运,2021,40(8):938-944. DOI:10.6047/j.issn.1000-8241.2021.08.016.
LIANG C J, XIE B, LIU Y Q, LIU Z J, GUO Z Q, REN C Y, et al. Prediction of soil corrosion rate of buried pipeline based on KPCA-GWO-SVM[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 938-944.
[12] 王盼锋,王寿喜,马钢,全青.基于PCA-PSO-SVM模型的海底多相流管道内腐蚀速率预测[J].安全与环境工程,2020,27(2):183-189. DOI:10.13578/j.cnki.issn.1671-1556.2020.02.025.
WANG P F, WANG S X, MA G, QUAN Q. Prediction of internal corrosion rate of submarine multiphase flow pipelines based on PCA-PSO-SVM model[J]. Safety and Environmental Engineering, 2020, 27(2): 183-189.
[13] 李响,余建星,苗春生,郭帅,齐凯,陈达兴.基于遗传算法SVM的海洋环境腐蚀速率预测[J].中国海洋平台,2018,33(5):56-62. DOI:10.3969/j.issn.1001-4500.2018.05.008.
LI X, YU J X, MIAO C S, GUO S, QI K, CHEN D X. Prediction of corrosion rate in marine environment based on support vector machine combining with genetic algorithm[J]. China Offshore Platform, 2018, 33(5): 56-62.
[14] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI: 10.1016/j.advengsoft.2016.01.008.
[15] 师国东,胡明茂,宫爱红,龚青山,郭庆贺,谭浩.基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型[J/OL].计算机集成制造系统:1-24[2024-09-11].http://kns.cnki.net/kcms/detail/11.5946.TP.20230724.1508.002.html.
SHI G D, HU M M, GONG A H, GONG Q S, GUO Q H, TAN H. Optimal prediction model of vehicle fuel consumption based on XGBoost-MSIWOA-LSTM[J/OL]. Computer Integrated Manufacturing Systems: 1-24[2024-09-11]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230724.1508.002.html.
[16] VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004:1-559.
VAPNIK V N. Statistical learning theory[M]. XU J H, ZHANG X G, translated. Beijing: Publishing House of Electronics Industry, 2004: 1-559.
[17] 刘昆.粒子群算法优化支持向量机的网络流量混沌预测[J].现代电子技术,2019,42(2):120-123. DOI:10.16652/j.issn.1004-373x.2019.02.028.
LIU K. Chaotic prediction of network traffic based on particle swarm algorithm optimization and support vector machine[J]. Modern Electronics Technique, 2019, 42(2): 120-123.
[18] 梁文娟,李雪艳.基于ARIMA、LS-SVM和BP神经网络组合模型的航空运输飞行事故征候预测[J].安全与环境工程,2018,25(1):130-136. DOI:10.13578/j.cnki.issn.1671-1556.2018.01.023.
LIANG W J, LI X Y. Flight incidents prediction of air transportation based on the combined model of ARIMA, LS-SVM and BPNN[J]. Safety and Environmental Engineering, 2018, 25(1): 130-136.
[19] 单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. DOI: 10.13195/j.cd.2005.02.60.shanl.013.
SHAN L, QIANG H, LI J, WANG Z Q. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2): 179-182.
[20] TIZHOOSH H R. Opposition-Based learning: a new scheme for machine intelligence[C]. Vienna: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), 2005: 695-701.
[21] 林娟,钟一文,马森林.改进的反向蛙跳算法求解函数优化问题[J].计算机应用研究,2013,30(3):760-763. DOI:10.3969/j.issn.1001-3695.2013.03.030.
LIN J, ZHONG Y W, MA S L. Improved opposition-based shuffled frog leaping algorithm for function optimization problems[J]. Application Research of Computers, 2013, 30(3): 760-763.
[22] RANA N, ABD LATIFF M S, ABDULHAMID S M, MISRA S. A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing[J]. Engineering Optimization, 2022, 54(12): 1999-2016. DOI: 10.1080/0305215X.2021.1969560.
[23] 任小康,郝瑞芝,孙正兴,史变霞.基于单纯形法的量子粒子群优化算法[J].微电子学与计算机,2010,27(1):154-157. DOI:10.19304/j.cnki.issn1000-7180.2010.01.041.
REN X K, HAO R Z, SUN Z X, SHI B X. Quantum_ behaved particle swarm optimization algorithm based on simplex method[J]. Microelectronics & Computer, 2010, 27(1): 154-157.
[24] 张潮,冯锋.混沌策略和单纯形法改进的鲸鱼优化算法[J].中国科技论文,2020,15(3):293-299. DOI:10.3969/j.issn.2095-2783.2020.03.007.
ZHANG C, FENG F. Whale optimization algorithm based on chaotic strategy and simplex method[J]. China Sciencepaper, 2020, 15(3): 293-299.
[25] 王秋萍,丁成,王晓峰.一种基于改进KH与KHM聚类的混合数据聚类算法[J].控制与决策,2020,35(10):2449-2458. DOI:10.13195/j.kzyjc.2019.0086.
WANG Q P, DING C, WANG X F. A hybrid data clustering algorithm based on improved krill herd algorithm and KHM clustering[J]. Control and Decision, 2020, 35(10): 2449-2458.
[26] 雍欣,高岳林,赫亚华,王惠敏.多策略融合的改进萤火虫算法[J].计算机应用,2022,42(12):3847-3855. DOI:10.11772/j.issn.1001-9081.2021101830.
YONG X, GAO Y L, HE Y H, WANG H M. Improved firefly algorithm based on multi-strategy fusion[J]. Journal of Computer Applications, 2022, 42(12): 3847-3855.
[27] 骆正山,马昌宝,王小完.基于RS-MSWOA-LSSVM的油气管道失效压力预测[J].安全与环境工程,2022,29(4):163-171. DOI:10.13578/j.cnki.issn.1671-1556.20211155.
LUO Z S, MA C B, WANG X W. Prediction of oil and gas pipeline failure pressure based on RS-MSWOA-LSSVM[J]. Safety and Environmental Engineering, 2022, 29(4): 163-171.
[28] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2005: 79-102.
[1]赵慧,倪洪亮,王博,等.热泵在原油长输管道的应用前景[J].油气储运,2011,30(04):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
Zhao Hui,Ni Hongliang,Wang Bo,et al.Application prospect of heat pump in long-distance crude oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(05):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
[2]张伟,许康,齐世明,等.加热炉改烧煤焦油存在的问题[J].油气储运,2011,30(03):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
Zhang Wei,Xu Kang,Qi Shiming,et al.Problems of adopting coal tar in heater[J].Oil & Gas Storage and Transportation,2011,30(05):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
[3]王永红,李晓平,宫敬.长输管道在线仿真系统的应用与展望[J].油气储运,2011,30(02):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
Wang Yonghong,Li Xiaoping,Gong Jing.The application and futurity of long-distance pipeline on-line simulation system[J].Oil & Gas Storage and Transportation,2011,30(05):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
[4]郭晓瑛,路艳斌,郑娟.国内外长输管道 SCADA 系统标准现状[J].油气储运,2011,30(02):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
Guo Xiaoying,Lu Yanbin,Zheng Juan.Technical status of long-distance pipeline SCADA system standards worldwide[J].Oil & Gas Storage and Transportation,2011,30(05):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
[5]杨莉,王从乐,姚玉萍,等.风城超稠油掺柴油长距离输送方法[J].油气储运,2011,30(10):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
Yang Li,Wang Congle,Yao Yuping,et al.Long-distance transportation method for Fengcheng Ultra-heavy Oils blended with diesel[J].Oil & Gas Storage and Transportation,2011,30(05):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
[6]陈荣,陈晓勤.苏丹3/7区原油管道加剂运行安全经济评价[J].油气储运,2011,30(12):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
Chen Rong and Chen Xiaoqin.Safety and economy evaluation of PPD-added oil pipeline in the 3/7 Block of Sudan[J].Oil & Gas Storage and Transportation,2011,30(05):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
[7]王洪超 石志国 许斌 王立坤 谭东杰 余东亮 熊敏.Hilbert-Huang 变换在管道泄漏监测系统中的应用[J].油气储运,2012,31(1):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
Wang Hongchao,Shi Zhiguo,Xu Bin,et al.Application of Hilbert-Huang Transformation in pipeline leak detection system[J].Oil & Gas Storage and Transportation,2012,31(05):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
[8]许学瑞,帅健,肖伟生.滑坡多发区管道应变监测应变计安装方法[J].油气储运,2010,29(10):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
Xu Xuerui,Shuai Jian,Xiao Weisheng.The Installation Method of Strain Gage Used to Monitor Pipeline Strain in Landslide-prone Areas[J].Oil & Gas Storage and Transportation,2010,29(05):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
[9]岳新民,唐智树,孙增武.管道试压的ASME标准和SNIP标准对比[J].油气储运,2010,29(12):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
Yue Xinmin,Tang Zhishu,Sun Zengwu.Comparison of ASME Code and SNIP Standard About Pipeline Pressure Test[J].Oil & Gas Storage and Transportation,2010,29(05):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
[10]贾双英,王志刚,蒋尚达,等.长输管道工程预结算中其他费用的计算[J].油气储运,2010,29(8):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
Jia Shuangying,Wang Zhigang,Jiang Shangda.Calculation on Other Costs in Pre-clearing of Long-distance Pipeline Project[J].Oil & Gas Storage and Transportation,2010,29(05):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
基金项目:国家自然科学基金资助项目“在役海底油气输送管道风险评估与管理研究”,41877527。
作者简介:骆正山,男,教授,2009年博士毕业于西安建筑科技大学结构工程专业,现主要从事油气管道的腐蚀防护、风险评估与建模等方面的研究工作。地址:陕西省西安市碑林区西安建筑科技大学雁塔校区,710055。电话:18591980812。Email:luozhengshan@163.com。
通信作者:吕海鹏,男,2000年生,在读硕士生,2022年毕业于河北科技师范学院工程管理专业,现主要从事油气管道输送研究工作。地址:陕西省西安市鄠邑区西安建筑科技大学草堂校区,710055。电话:13393388838。Email:1031456444@qq.com。