网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
[1] 郭克星,房世超,高杰.油气输送用管线钢组织及性能研究进展[J].大型铸锻件,2024(1):41-46. DOI:10.14147/j.cnki.51-1396/tg.2024.01.005.
GUO K X, FANG S C, GAO J. Research progress on microstructure and properties of pipeline steel for oil and gas transmission[J]. Heavy Casting and Forging, 2024(1): 41-46.
[2] 刘迎来,许彦,王高峰,聂向晖,丰振军,李亮.中俄东线-45℃低温环境油气管道工程用X80钢级Φ1422 mm×33.8 mm感应加热弯管研发[J].焊管,2019,41(7):48-54. DOI:10.19291/j.cnki.1001-3938.2019.7.005.
LIU Y L, XU Y, WANG G F, NIE X H, FENG Z J, LI L. Development of X80 Φ1422 mm×33.8 mm induction heating bend for China-Russia East nature gas pipeline project in -45℃ low temperature environment[J]. Welded Pipe and Tube, 2019, 41(7): 48-54.
[3] 王晓香.国内外超大输量天然气管道建设综述[J].焊管,2019,42(7):1-9. DOI:10.19291/j.cnki.1001-3938.2019.7.001.
WANG X X. Overview of the construction of super-large transportation capacity natural gas pipelines at home and abroad[J]. Welded Pipe and Tube, 2019, 42(7): 1-9.
[4] 李光,徐学利,张骁勇,王洪铎. X100管线钢焊接热影响区不同区域的显微组织与冲击韧性[J].机械工程材料,2023,47(9):41-45,56. DOI:10.11973/jxgccl202309007.
LI G, XU X L, ZHANG X Y, WANG H D. Microstructure and impact toughness of different regions of welding heat-affected zone of X100 pipeline steel[J]. Materials for Mechanical Engineering, 2023, 47(9): 41-45, 56.
[5] 严春妍,元媛,张可召,吴立超,王宝森. X100管线钢焊接冷裂纹敏感性[J].焊接学报,2019,40(12):41-46. DOI:10.12073/j.hjxb.2019400310.
YAN C Y, YUAN Y, ZHANG K Z, WU L C, WANG B S. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. Transactions of the China Welding Institution, 2019, 40(12): 41-46.
[6] SHIN S Y, OH K, KANG K B, LEE S. Improvement of Charpy impact properties in heat affected zones of API X80 pipeline steels containing complex oxides[J]. Materials Science and Technology, 2010, 26(9): 1049-1058. DOI: 10.1179/174328409X425218.
[7] 张河健,李烈军,高吉祥,彭政务.深海用X70管线钢焊接粗晶热影响区组织和性能研究[J].热加工工艺,2017,46(1):57-60. DOI:10.14158/j.cnki.1001-3814.2017.01.015.
ZHANG H J, LI L J, GAO J X, PENG Z W. Study on microstructure and properties of CGHAZ of X70 pipeline steel for deep sea[J]. Hot Working Technology, 2017, 46(1): 57-60.
[8] BAI F, DING H S, TONG L G, PAN L Q. Microstructure and properties of the interlayer heat-affected zone in X80 pipeline girth welds[J]. Progress in Natural Science: Materials International, 2020, 30(1): 110-117. DOI: 10.1016/j.pnsc.2019.08.010.
[9] LU Z P, YU L H, XU J H, DU C C, ZHANG H. Influence of secondary thermal cycle on softening behavior and mechanism of heat affected zone in TIG-welded spray formed 7055 aluminum alloy[J]. Journal of Materials Research and Technology, 2022, 21: 2118-2132. DOI: 10.1016/j.jmrt.2022.10.062.
[10] 佘人杰,张波,肖爱达,周剑丰,刘宁,梁文. t8/5对NM400耐磨钢焊接粗晶区组织和性能的影响[J/OL].热加工工艺,2025(3):56-59,64[2024-07-10].https://doi.org/10.14158/j.cnki.1001-3814.20232010. DOI:10.14158/j.cnki.1001-3814.20232010.
SHE R J, ZHANG B, XIAO A D, ZHOU J F, LIU N, LIANG W. Effect of t8/5 on microstructure and properties of welding coarse grain region of NM400 wear-resistant steel[J/OL]. Hot Working Technology, 2025(3): 56-59, 64[2024-07-10]. https://doi.org/10.14158/j.cnki.1001-3814.20232010. DOI:10.14158/j.cnki.1001-3814.20232010.
[11] KONG X W, QIU C L. Continuous cooling bainite transformation characteristics of a low carbon microalloyed steel under the simulated welding thermal cycle process[J]. Journal of Materials Science & Technology, 2013, 29(5): 446-450. DOI: 10.1016/j.jmst.2013.03.022.
[12] MOHAMMADIJOO M, VALLOTON J, COLLINS L, HENEIN H, IVEY D G. Characterization of martensite-austenite constituents and micro-hardness in intercritical reheated and coarse-grained heat affected zones of API X70 HSLA steel[J]. Materials Characterization, 2018, 142: 321-331. DOI: 10.1016/j.matchar.2018.05.057.
[13] 张清清,章传国,郑磊. T8/5时间对X80管线钢热影响区组织和韧性的影响[J].中国冶金,2017,27(4):26-31. DOI:10.13228/j.boyuan.issn1006-9356.20160235.
ZHANG Q Q, ZHANG C G, ZHENG L. Effect of T8/5 time on microstructure and toughness in heat affected zone of X80 pipeline steel[J]. China Metallurgy, 2017, 27(4): 26-31.
[14] MOEINIFAR S, KOKABI A H, MADAAH HOSSEINI H R. Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones[J]. Materials & Design, 2010, 31(6): 2948-2955. DOI: 10.1016/j.matdes.2009.12.023.
[15] 李东,尹立孟,耿燕飞,王学军,蒋勇,王刚. t8/5对X90管线钢焊接热影响区细晶区显微组织的影响[J].焊管,2016,39(3):1-4. DOI:10.19291/j.cnki.1001-3938.2016.03.001.
LI D, YIN L M, GENG Y F, WANG X J, JIANG Y, WANG G. Influence of t8/5 on the microstructure in HAZ fine grain zone of X90 pipeline steel[J]. Welded Pipe and Tube, 2016, 39(3): 1-4.
[16] 隋永莉,王鹏宇.中俄东线天然气管道黑河—长岭段环焊缝焊接工艺[J].油气储运,2020,39(9):961-970. DOI:10.6047/j.issn.1000-8241.2020.09.001.
SUI Y L, WANG P Y. Girth welding technology used in Heihe-Changling Section of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(9): 961-970.
[17] DONG P S, SONG S P, PEI X J. An IIW residual stress profile estimation scheme for girth welds in pressure vessel and piping components[J]. Welding in the World, 2016, 60(2): 283-298. DOI: 10.1007/s40194-015-0286-4.
[18] ZHAO W M, JIANG W, ZHANG H J, HAN B, JIN H C, GAO Q. 3D finite element analysis and optimization of welding residual stress in the girth joints of X80 steel pipeline[J]. Journal of Manufacturing Processes, 2021, 66: 166-178. DOI: 10.1016/j.jmapro.2021.04.009.
[19] YU D L, YANG C, SUN Q F, DAI L S, WANG A L, XUAN H. Impact of process parameters on temperature and residual stress distribution of X80 pipe girth welds[J]. International Journal of Pressure Vessels and Piping, 2023, 203: 104939. DOI: 10.1016/j.ijpvp.2023.104939.
[20] 孙振邦,刘乐乐,童嘉晖,韩永全,陈芙蓉.基于改进热源模型的铝合金MIG焊数值分析[J].焊接学报,2023,44(2):111-116,128. DOI:10.12073/j.hjxb.20220325007.
SUN Z B, LIU L L, TONG J H, HAN Y Q, CHEN F R. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. Transactions of the China Welding Institution, 2023, 44(2): 111-116, 128.
[21] 张德芬,王进,景亮,彭波,蒋平.热输入对X80管线钢焊接粗晶区组织与性能的影响[J].金属热处理,2014,39(2):47-50. DOI:10.13251/j.issn.0254-6051.2014.02.016.
ZHANG D F, WANG J, JING L, PENG B, JIANG P. Influence of heat input on microstructure and properties of welding coarse-grained zone of X80 pipeline steel[J]. Heat Treatment of Metals, 2014, 39(2): 47-50.
[22] 周祯童.X80管线钢焊接温度-应力场数值模拟及实验研究[D].乌鲁木齐:新疆大学,2021.
ZHOU Z T. Simulation and experimental study on welding temperature-stress field of X80 pipeline steel[D]. Urumqi: Xinjiang University, 2021.
[23] 蒋伟.焊接工艺对X80钢临氢管线环焊接头残余应力与氢富集的影响[D].青岛:中国石油大学(华东),2019.
JIANG W. Effects of welding procedure on residual stress and hydrogen enrichment in girth joints of hydrogen-containing gas transmission X80 steel pipeline[D]. Qingdao: China University of Petroleum (East China), 2019.
[24] YAN C Y, LIU C Y, YAN B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J]. Computational Materials Science, 2014, 83: 158-163. DOI: 10.1016/j.commatsci.2013.11.007.
[25] 曾威民,张波,刘旭辉,肖爱达,欧玲.低合金高强钢焊接t8/5测定实验研究[J].四川冶金,2019,41(2):7-10,14. DOI:10.3969/j.issn.1001-5108.2019.02.003.
ZENG W M, ZHANG B, LIU X H, XIAO A D, OU L. Experimental study of welding t8/5 of low alloy and high strength steel[J]. Sichuan Metallurgy, 2019, 41(2): 7-10, 14.
[1]黄春芳 陈燕 周芳 黄月 吴州阳 杨松 王自发. 石油天然气管道站内管道爆破吹扫[J].油气储运,2012,31(12):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
Huang Chunfang,Chen Yan,Zhou Fang,et al. Bursting purge method in stations of oil and gas pipeline[J].Oil & Gas Storage and Transportation,2012,31(04):934.[doi:10.6047/j.issn.1000-8241.2012.06.016]
[2]戴联双,汤长江,冯治中,等.油气管道恐怖袭击风险评估方法与应用[J].油气储运,2011,30(05):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
Dai Lianshuang,Tang Changjiang,Feng Zhizhong,et al.Risk assessment methodology and application for oil and gas pipelines’ terrorist attack[J].Oil & Gas Storage and Transportation,2011,30(04):337.[doi:10.6047/j.issn.1000-8241.2011.05.004]
[3]王乾坤,张争伟,石悦,等.埋地油气管道并行敷设技术发展现状[J].油气储运,2011,30(01):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
Wang Qiankun,Zhang Zhengwei,Shi Yue,et al.Development status of the parallel laying technology in underground oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(04):1.[doi:10.6047/j.issn.1000-8241.2011.01.001]
[4]马伟平,贾子麒,赵晋云,等.美国油气管道法规和标准体系的管理模式[J].油气储运,2011,30(01):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
Ma Weiping,Jia Ziqi,Zhao Jinyun,et al.Oil and gas pipeline eegulations and management mode of standard system in America[J].Oil & Gas Storage and Transportation,2011,30(04):5.[doi:10.6047/j.issn.1000-8241.2011.01.002]
[5]李鹤林.油气管道失效控制技术[J].油气储运,2011,30(06):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
Li Helin.Failure control technique of oil & gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(04):401.[doi:10.6047/j.issn.1000-8241.2011.06.001]
[6]荆宏远,郝建斌,陈英杰,等.管道地质灾害风险半定量评价方法与应用[J].油气储运,2011,30(07):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
Jing Hongyuan,Hao Jianbin,Chen Yingjie,et al.Technique and application of geologic hazard risk semi-quantitative assessment of pipeline[J].Oil & Gas Storage and Transportation,2011,30(04):497.[doi:10.6047/j.issn.1000-8241.2011.07.005]
[7]陈敬和.管道外腐蚀直接评价技术[J].油气储运,2011,30(07):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
Chen Jinghe.Direct assessment technology of pipeline external corrosion[J].Oil & Gas Storage and Transportation,2011,30(04):523.[doi:10.6047/j.issn.1000-8241.2011.07.012]
[8]吴琋瑛.光缆与油气管道同沟敷设应用实践[J].油气储运,2011,30(07):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
Wu Xiying.Technique application of laying in one ditch for fiber cable and oil or gas pipeline[J].Oil & Gas Storage and Transportation,2011,30(04):547.[doi:10.6047/j.issn.1000-8241.2011.07.021]
[9]焦中良,李志文,李志勇,等.油气管道波动压力的雨流计数与分析[J].油气储运,2011,30(08):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
Jiao Zhongliang,Li Zhiwen,Li Zhiyong,et al.Rain-flow counting analysis of the fluctuation pressure for oil & gas pipelines[J].Oil & Gas Storage and Transportation,2011,30(04):624.[doi:10.6047/j.issn.1000-8241.2011.08.007]
[10]樊文斌,罗自治,张策.管内高压封堵器的研制[J].油气储运,2011,30(08):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
Fan Wenbin,Luo Zizhi,Zhang Ce.Development of high-pressure pipeline isolation plug[J].Oil & Gas Storage and Transportation,2011,30(04):657.[doi:10.6047/j.issn.1000-8241.2011.08.015]
基金项目:国家重点研发计划“中俄管道重大风险防控与安全保障关键技术”,2022YFC3070100。
作者简介:张小强,男,1985年生,工程师,2011年硕士毕业于中国科学院研究生院材料学专业,现主要从事油气管道的设计及研究工作。地址:河北省廊坊市广阳区和平路146号,065000。电话:18732618610。Email:414981210@qq.com。
通信作者:李岩,男,1988年生,副教授,博士生导师,2015年博士毕业于获北京科技大学动力工程及工程热物理专业,现主要从事离子弧焊接工艺及其电-磁-热-力耦合作用机理方向的研究工作。地址:北京市昌平区府学路18号,102249。电话:13488791965。Email:heartonelee@cup.edu.cn