[1]江新星,张雪琴,薛一冰,等.基于SOM-BP级联神经网络的电驱离心泵健康状态识别方法[J].油气储运,2025,44(03):1-15.
 JIANG Xinxing,ZHANG Xueqin,XUE Yibing,et al.Health status recognition method of electrically driven centrifugal pump based on cascade-structured SOM-BP neural networks[J].Oil & Gas Storage and Transportation,2025,44(03):1-15.
点击复制

基于SOM-BP级联神经网络的电驱离心泵健康状态识别方法

相似文献/References:

[1]赵会军,张青松,张国忠,等.基于BP神经网络顺序输送混油粘度预测[J].油气储运,2007,26(12):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
 ZHAO Huijun,ZHANG Qingsong.Study on Contamination Viscosity in Batch Transportation Based on the BP Neural Network[J].Oil & Gas Storage and Transportation,2007,26(03):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
[2]付道明,孙军,贺志刚,等.预测腐蚀管道剩余强度的新方法[J].油气储运,2004,23(4):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
 FU Daoming,SUN Jun.A New method to Predict Residual Strength of Corrosion Pipelines[J].Oil & Gas Storage and Transportation,2004,23(03):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
[3]喻西崇,赵金洲,纪录军,等.利用神经网络分析注水管道内腐蚀影响因素[J].油气储运,2003,22(2):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
 YU Xichong,ZHAO Jinzhou.Corrosion Influence Factors Analysis Using Neural Network for Injecting Pipeline[J].Oil & Gas Storage and Transportation,2003,22(03):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
[4]刘刚,周志龙,王正涛,等.改进BP神经网络在管道腐蚀速率预测中的应用[J].油气储运,2006,25(4):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
 LIU Gang,ZHOU Zhilong.The Application of the Improved BP Neural Network in Prediction of Pipeline Corrosion Rate[J].Oil & Gas Storage and Transportation,2006,25(03):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
[5]高山卜,钱成文,张沛,等.基于改进的BP神经网络管输能耗预测模型[J].油气储运,2014,33(8):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
 GAO Shanbu,QIAN Chengwen,ZHANG Pei,et al.Prediction model of pipeline energy consumption based on improved BP neural network[J].Oil & Gas Storage and Transportation,2014,33(03):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
[6]郑倩 张宏 刘啸奔.基于BP-MC方法的断层区管道的可靠性分析[J].油气储运,2019,38(12):1.
 ZHENG Qian,ZHANG Hong,LIU Xiaoben.Reliability analysis of pipeline in fault area based on BP-MC method[J].Oil & Gas Storage and Transportation,2019,38(03):1.
[7]徐长航,刘鹏谦,李振兴,等.基于声发射信号的气液两相流管道泄漏识别方法[J].油气储运,2021,40(10):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
 XU Changhang,LIU Pengqian,LI Zhenxing,et al.Leakage identification method of gas-liquid two-phase flow pipeline based on acoustic emission signal[J].Oil & Gas Storage and Transportation,2021,40(03):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
[8]肖荣鸽,刘博,王勤学,等.基于GRA-ABC-BPNN模型的城市燃气日负荷预测[J].油气储运,2022,41(08):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
 XIAO Rongge,LIU Bo,WANG Qinxue,et al.Daily load forecasting of urban gas based on GRA-ABC-BPNN model[J].Oil & Gas Storage and Transportation,2022,41(03):987.[doi:10.6047/j.issn.1000-8241.2022.08.015]
[9]孙天礼,韩雪,黄仕林,等.元坝高酸性气田地面管道内腐蚀预测[J].油气储运,2023,42(01):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
 SUN Tianli,HAN Xue,HUANG Shilin,et al.Internal corrosion prediction of ground pipeline of Yuanba high-sour gasfield[J].Oil & Gas Storage and Transportation,2023,42(03):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
[10]温泉,石小平,张利分,等.基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J].油气储运,2023,42(06):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
 WEN Quan,SHI Xiaoping,ZHANG Lifen,et al.APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J].Oil & Gas Storage and Transportation,2023,42(03):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]

更新日期/Last Update: 2025-02-12