[1]洪伟民,俞欣然,李玉星.含水层地下储氢性能数值模拟[J].油气储运,2024,43(08):1-14.
HONG Weimin,YU Xinran,LI Yuxing.Numerical simulation of underground hydrogen storage performance in aquifers[J].Oil & Gas Storage and Transportation,2024,43(08):1-14.
点击复制
《油气储运》[ISSN:1000-8241/CN:13-1093/TE]
卷:
43
期数:
2024年08期
页码:
1-14
栏目:
出版日期:
2024-08-25
- Title:
-
Numerical simulation of underground hydrogen storage performance in aquifers
- 作者:
-
洪伟民; 俞欣然; 李玉星
-
- Author(s):
-
HONG Weimin; YU Xinran; LI Yuxing
-
-
- 关键词:
-
含水层储氢; 注入速率; 采出速率; 相对渗透率滞后; 掺氢天然气; 回采率
- Keywords:
-
Hydrogen storage in aquifers; Injection rate; Extraction rate; Relative permeability hysteresis; Natural gas blending with hydrogen; Recovery ratio
- 分类号:
-
TE822
- 文献标志码:
-
A
- 摘要:
-
【目的】随着全球能源结构的转型,含水层地下储氢技术因具有大规模储能潜力而成为研究热点,但对氢气在含水层内流动的探索仍显不足。为明确不同注采速率、相对渗透率滞后性及天然气掺氢比对含水层储氢性能的影响,使用Computer Modelling Group(CMG)软件进行了不同工况下的含水层储氢模拟。【方法】通过建立动态模型,模拟了相对渗透率滞后效应不同时注入速率为2.5×105 m³/d、5×105 m³/d,采出速率为2.5×105 m³/d、5×105 m³/d,天然气掺氢比为10%、25%条件下的含水层储氢工况,分析了相关因素对氢气在含水层中的扩散与储存的影响。【结果】较高的注入速率与采出速率都会降低含水层的储氢性能,具体表现为:较高的注入速率降低了相同时间内储存与回采的氢气体积,增大了储层压力;较高的采出速率减少了回采的氢气体积,导致更多氢气滞留在含水层内,增大了储层压力。相对渗透率滞后效应不可避免地导致氢气回采量减少,造成氢能浪费。天然气掺氢比的差异对储氢性能影响不大,但与纯氢相比,掺氢的气体回采能力更强,生产井水积聚的风险更大。【结论】研究结果揭示了不同参数对储氢性能的影响,为含水层储氢的优化提供了参考,为大规模储氢的实现提供了技术支持。建议后续测量更多掺氢比工况下的相对渗透率曲线,以确保掺氢储存的可靠性。
- Abstract:
-
[Objective] With the global transition in the energy structure, aquifer-based underground hydrogen storage technology has emerged as a focal point of research due to its substantial potential for large-scale energy storage. Although the interest in aquifer hydrogen storage is growing both domestically and internationally, the understanding of hydrogen flow within aquifers remains inadequate. To elucidate the effects of varying injection and extraction rates, relative permeability hysteresis, and hydrogen-natural gas blending ratios on the performance of aquifer hydrogen storage, this study employs Computer Modelling Group(CMG) software to simulate aquifer hydrogen storage under different conditions. [Methods] By constructing dynamic models, the study simulates aquifer hydrogen storage under conditions of injection rates at 2.5×10^5 m³/d and 5×10^5 m³/d, extraction rates at 2.5×10^5 m³/d and 5×10^5 m³/d, relative permeability hysteresis, and hydrogen-natural gas blending ratios of 10% and 25%. The analysis focuses on the impact of these factors on hydrogen diffusion and storage efficiency within the aquifer. [Results] The simulation results indicate that higher injection and extraction rates reduce the hydrogen storage performance of the aquifer. Specifically, higher injection rates decrease the volume of hydrogen stored and recovered within the same timeframe while increasing reservoir pressure. Similarly, higher extraction rates reduce the volume of hydrogen recovered, leading to more hydrogen retention within the aquifer and increased reservoir pressure. Relative permeability hysteresis inevitably results in a significant reduction in hydrogen recovery, causing hydrogen energy wastage. Variations in hydrogen-natural gas blending ratios have a minimal impact on storage performance; however, compared to pure hydrogen storage, blending enhances gas recovery capability while increasing the risk of water accumulation in production wells. [Conclusion] The findings reveal the mechanisms by which different parameters influence hydrogen storage performance, providing a reference for optimizing aquifer hydrogen storage operations and offering technical support for large-scale hydrogen energy storage. For hydrogen-natural gas blending storage, it is recommended to measure relative permeability curves at various blending ratios to ensure the reliability of blended hydrogen storage.