[1]宁元星,刘翠伟,李玉星,等.长周期临氢服役管材适应性评价[J].油气储运,2024,43(10):1-14.
 NING Yuanxing,LIU Cuiwei,LI Yuxing,et al.Assessment of adaptability of long period serviced pipeline steel in hydrogen environment[J].Oil & Gas Storage and Transportation,2024,43(10):1-14.
点击复制

长周期临氢服役管材适应性评价

参考文献/References:

[1] 张家轩,王财林,刘翠伟,胡其会,张睿,徐修赛,等.掺氢天然气环境下管道钢氢脆行为研究进展[J].表面技术,2022,51(10):76-88. DOI:10.16490/j.cnki.issn.1001-3660.2022.10.009.
ZHANG J X, WANG C L, LIU C W, HU Q H, ZHANG R, XU X S, et al. Research progress on hydrogen embrittlement behavior of pipeline steel in the environment of hydrogen-blended natural gas[J]. Surface Technology, 2022, 51(10): 76-88.
[2] 程玉峰,孙颖昊,张引弟.氢气管道发展与管线钢氢脆挑战[J].长江大学学报(自然科学版),2022,19(1):54-69. DOI:10.16772/j.cnki.1673-1409.20220129.002.
CHENG Y F, SUN Y H, ZHANG Y D. Development of hydrogen pipelines and hydrogen embrittlement challenges of pipeline steel[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 54-69.
[3] 刘翠伟,裴业斌,韩辉,周慧,张睿,李玉星,等.氢能产业链及储运技术研究现状与发展趋势[J].油气储运,2022,41(5):498-514. DOI:10.6047/j.issn.1000-8241.2022.05.002.
LIU C W, PEI Y B, HAN H, ZHOU H, ZHANG R, LI Y X, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498-514.
[4] 程玉峰.高压氢气管道氢脆问题明晰[J].油气储运,2023,42(1):1-8. DOI:10.6047/j.issn.1000-8241.2023.01.001.
CHENG Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 1-8.
[5] 钟桂香,郗祥远.输氢管道工程设计要点[J].焊管,2023,46(3):59-64. DOI:10.19291/j.cnki.1001-3938.2023.03.011.
ZHONG G X, XI X Y. Design key points of hydrogen pipelines[J]. Welded Pipe and Tube, 2023, 46(3): 59-64.
[6] 李凤,董绍华,陈林,朱喜平,韩子从.掺氢天然气长距离管道输送安全关键技术与进展[J].力学与实践,2023,45(2):230-244. DOI:10.6052/1000-0879-22-579.
LI F, DONG S H, CHEN L, ZHU X P, HAN Z C. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas[J]. Mechanics in Engineering, 2023, 45(2): 230-244.
[7] SUN Y H, CHENG Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34469-34486. DOI: 10.1016/j.ijhydene.2021.07.217.
[8] WALCH S P. Model studies of the interaction of h atoms with bcc iron[J]. Surface Science, 1984, 143(1): 188-203. DOI: 10.1016/0039-6028(84)90418-7.
[9] PENG Z X, LIU J, HUANG F, HU Q, CAO C S, HOU S P. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12616-12628. DOI: 10.1016/j.ijhydene.2020.02.131.
[10] 蒋文春,巩建鸣,唐建群,陈虎.湿H2S环境下16MnR钢氢鼓泡的有限元模拟[J].吉林大学学报(工学版),2008,38(1):61-65. DOI:10.13229/j.cnki.jdxbgxb2008.01.007.
JIANG W C, GONG J M, TANG J Q, CHEN H. Finite element simulation of hydrogen blistering of steel 16MnR serving in wet H2S environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(1): 61-65.
[11] SUN Y H, FRANK CHENG Y. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review[J]. Engineering Failure Analysis, 2022, 133: 105985. DOI: 10.1016/j.engfailanal.2021.105985.
[12] 蒙波.含氢天然气高压输送管道材料性能劣化及失效后果研究[D].杭州:浙江大学,2016.
MENG B. Investigation on material property degradation and failure consequence of the high-pressure natural gas/hydrogen blends pipeline[D]. Hangzhou: Zhejiang University, 2016.
[13] 封辉,池强,吉玲康,李鹤,杨坤.管线钢氢脆研究现状及进展[J].腐蚀科学与防护技术,2017,29(3):318-322. DOI:10.11903/1002.6495.2016.154.
FENG H, CHI Q, JI L K, LI H, YANG K. Research and development of hydrogen embrittlement of pipeline steel[J]. Corrosion Science and Protection Technology, 2017, 29(3): 318-322.
[14] 杜建伟,明洪亮,王俭秋.输氢管道氢脆研究现状及进展[J].油气储运,2023,42(10):1107-1117. DOI:10.6047/j.issn.1000-8241.2023.10.004.
DU J W, MING H L, WANG J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines[J]. Oil & Gas Storage and Transportation, 2023, 42(10): 1107-1117.
[15] 刘清华,唐慧文,斯庭智.氢陷阱对钢氢脆敏感性的影响[J].材料保护,2018,51(11):127-132,143. DOI:10.16577/i.cnki.42-1215/tb.2018.11.026.
LIU Q H, TANG H W, SI T Z. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Materials Protection, 2018, 51(11): 127-132, 143.
[16] BOES N, ZÜCHNER H. Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals[J]. Journal of the Less Common Metals, 1976, 49: 223-240. DOI: 10.1016/0022-5088(76)90037-0.
[17] CHEN Y S, LU H Z, LIANG J T, ROSENTHAL A, LIU H W, SNEDDON G, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367(6474): 171-175. DOI: 10.1126/science.aaz0122.
[18] OUDRISS A, CREUS J, BOUHATTATE J, CONFORTO E, BERZIOU C, SAVALL C, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Materialia, 2012, 60(19): 6814-6828. DOI: 10.1016/j.actamat.2012.09.004.
[19] 周池楼,刘先晖,张永君,张耕.钢中夹杂物对氢扩散行为的影响规律[J].天然气工业,2022,42(9):135-144. DOI:10.3787/j.issn.1000-0976.2022.09.013.
ZHOU C L, LIU X H, ZHANG Y J, ZHANG G. Influence of inclusions in steel on hydrogen diffusion behavior[J]. Natural Gas Industry, 2022, 42(9): 135-144.
[20] 李玉星,张睿,刘翠伟,王财林,杨宏超,胡其会,等.掺氢天然气管道典型管线钢氢脆行为[J].油气储运,2022,41(6):732-742. DOI:10.6047/j.issn.1000-8241.2022.06.015.
LI Y X, ZHANG R, LIU C W, WANG C L, YANG H C, HU Q H, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 732-742.
[21] 张体明.高压煤制气管线X80钢焊接接头的氢致脆化研究[D].青岛:中国石油大学(华东),2016.
ZHANG T M. Study on hydrogen embrittlement of X80 pipeline steel welded joints in high pressure coal gas environment[D]. Qingdao: China University of Petroleum(East China), 2016.
[22] ZHAO W M, ZHANG T M, ZHAO Y J, SUN J B, WANG Y. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J]. Corrosion Science, 2016, 111: 84-97. DOI: 10.1016/j.corsci.2016.04.029.
[23] KOREN E, HAGEN C H M, WANG D, LU X, JOHNSEN R, YAMABE J. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique[J]. Corrosion Science, 2023, 215: 111025. DOI: 10.1016/j.corsci.2023.111025.
[24] 苟金鑫,聂如煜,邢潇,李自力,崔淦,刘建国.临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型[J].油气储运,2023,42(7):754-762. DOI:10.6047/j.issn.1000-8241.2023.07.004.
GOU J X, NIE R Y, XING X, LI Z L, CUI G, LIU J G. Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect[J]. Oil & Gas Storage and Transportation, 2023, 42(7): 754-762.
[25] 朱珠,廖绮,邱睿,梁永图,宋悦,薛杉.长距离氢气管道运输的技术经济分析[J].石油科学通报,2023,8(1):112-124. DOI:10.3969/j.issn.2096-1693.2023.01.008.
ZHU Z, LIAO Q, QIU R, LIANG Y T, SONG Y, XUE S. Technical and economic analysis on long-distance hydrogen pipeline transportation[J]. Petroleum Science Bulletin, 2023, 8(1): 112-124.
[26] 曹权,王洪建,秦业美,王敏.纯氢管道输氢技术发展现状与分析[J].力学与实践,2024,46(1):18-27. DOI:10.6052/1000-0879-23-355.
CAO Q, WANG H J, QIN Y M, WANG M. Current status and analysis of the development of pure hydrogen pipeline hydrogen transmission technology[J]. Mechanics in Engineering, 2024, 46(1): 18-27.
[27] 蒋庆梅,王琴,谢萍,屈向军.国内外氢气长输管道发展现状及分析[J].油气田地面工程,2019,38(12):6-8,64. DOI:10.3969/j.issn.1006-6896.2019.12.002.
JIANG Q M, WANG Q, XIE P, QU X J. Development status and analysis of long-distance hydrogen pipeline at home and abroad[J]. Oil-Gas Field Surface Engineering, 2019, 38(12): 6-8, 64.
[28] OHAERI E, EDUOK U, SZPUNAR J. Hydrogen related degradation in pipeline steel: a review[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14584-14617. DOI: 10.1016/j.ijhydene.2018.06.064.
[29] SONG J, CURTIN W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145-151. DOI: 10.1038/nmat3479.
[30] LI X F, MA X F, ZHANG J, AKIYAMA E, WANG Y F, SONG X L. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metallurgica Sinica(English Letters), 2020, 33(6): 759-773. DOI: 10.1007/s40195-020-01039-7.
[31] 孙颖昊,程玉峰.高强管线钢焊缝区氢损伤研究与展望[J].石油管材与仪器,2021,7(6):1-13. DOI:10.19459/j.cnki.61-1500/te.2021.06.001.
SUN Y H, CHENG Y F. A review on hydrogen damage at welds of high-strength steel pipelines[J]. Petroleum Tubular Goods & Instruments, 2021, 7(6): 1-13.
[32] WANG C L, ZHANG J X, LIU C W, HU Q H, ZHANG R, XU X S, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests[J]. International Journal of Hydrogen Energy, 2023, 48(1): 243-256. DOI: 10.1016/j.ijhydene.2022.09.228.
[33] WANG C L, XU X S, HUA Y, ZHANG R, LIU C W, LUO X M, et al. Inhibiting effect of carbon monoxide on gaseous hydrogen embrittlement of pipelines transporting hydrogen[J]. Corrosion Science, 2024, 227: 111789. DOI: 10.1016/j.corsci.2023.111789.
[34] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏.高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J].金属学报,2015,51(9):1101-1110. DOI:10.11900/0412.1961.2015.00039.
ZHANG T M, WANG Y, ZHAO W M, TANG X Y, DU T H, YANG M. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure coal gas environment[J]. Acta Metallurgica Sinica, 2015, 51(9): 1101-1110.
[35] LIU C W, YANG H C, WANG C L, ZHANG H M, DING R, AI L N, et al. Effects of CH4 and CO on hydrogen embrittlement susceptibility of X80 pipeline steel in hydrogen blended natural gas[J]. International Journal of Hydrogen Energy, 2023, 48(71): 27766-27777. DOI: 10.1016/j.ijhydene.2023.03.443.
[36] ZHANG T M, ZHAO W M, ZHAO Y J, OUYANG K, DENG Q S, WANG Y L, et al. Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3353-3365. DOI: 10.1016/j.ijhydene.2017.12.170.
[37] 袁晓姿,徐坚,孙秀魁,魏宝明.表面氧化层对低碳钢氢渗透行为的影响[J].腐蚀科学与防护技术,1995,7(2):151-156.
YUAN X Z, XU J, SUN X K, WEI B M. Effects of surface oxide layer on hydrogen permeation behaviour in low-carbon steel[J]. Corrosion Science and Protection Technology, 1995, 7(2): 151-156.
[38] 姚婵,陈健,明洪亮,王俭秋.管线钢氢渗透行为的研究进展[J].中国腐蚀与防护学报,2023,43(2):209-219. DOI:10.11902/1005.4537.2022.140.
YAO C, CHEN J, MING H L, WANG J Q. Research progress on hydrogen permeability behavior of pipeline steel[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 209-219.
[39] THOMAS A, SZPUNAR J A. Hydrogen diffusion and trapping in X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2390-2404. DOI: 10.1016/j.ijhydene.2019.11.096.
[40] YAO C, MING H L, CHEN J, WANG J Q, HAN E H. Effect of cold deformation on the hydrogen permeation behavior of X65 pipeline steel[J]. Coatings, 2023, 13(2): 280. DOI: 10.3390/coatings13020280.
[41] 李平,耿烟茗,胡茹萌,郭为民,彭文山,杜敏,等.pH值对海水中TMCP X80钢氢脆敏感性影响[J].腐蚀科学与防护技术,2019,31(4):387-395. DOI:10.11903/1002.6495.2018.245.
LI P, GENG Y M, HU R M, GUO W M, PENG W S, DU M, et al. Effect of pH value on hydrogen embrittlement of TMCP X80 steel in seawater[J]. Corrosion Science and Protection Technology, 2019, 31(4): 387-395.
[42] DEAR F F, SKINNER G C G. Mechanisms of hydrogen embrittlement in steels: discussion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2098): 20170032. DOI: 10.1098/rsta.2017.0032.
[43] ZHANG J, CHENG Y F. Study by finite element modeling of hydrogen atom diffusion and distribution at a dent on existing pipelines for hydrogen transport[J]. Journal of Cleaner Production, 2023, 418: 138165. DOI: 10.1016/j.jclepro.2023.138165.
[44] YANG F Q, ZHAN W J, YAN T, ZHANG H B, FANG X R. Numerical analysis of the coupling between hydrogen diffusion and mechanical behavior near the crack tip of titanium[J]. Mathematical Problems in Engineering, 2020, 2020: 3618589. DOI: 10.1155/2020/3618589.
[45] YAKTITI A, DREANO A, GASS R, YVERT T, CARTON J F, CHRISTIEN F. Modelling of hydrogen diffusion in a steel containing micro-porosity. Application to the permeation experiment[J]. International Journal of Hydrogen Energy, 2023, 48(37): 14079-14094. DOI: 10.1016/j.ijhydene.2022.12.208.
[46] 张体明,赵卫民,蒋伟,王永霖,杨敏.X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J].金属学报,2019,55(2):258-266. DOI:10.11900/0412.1961.2018.00060.
ZHANG T M, ZHAO W M, JIANG W, WANG Y L, YANG M. Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity[J]. Acta Metallurgica Sinica, 2019, 55(2): 258-266.
[47] KONG D J, WU Y Z, LONG D. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. Journal of Iron and Steel Research International, 2013, 20(1): 40-46. DOI: 10.1016/S1006-706X(13)60042-4.

备注/Memo

基金项目:国家重点研发计划氢能技术专项“中低压纯氢与掺氢燃气管道输送及其应用关键技术”,2021YFB4001605。
作者简介:宁元星,1996年生,博士研究生,现主要从事输氢管道接头安全方面的研究工作。地址:山东省青岛市黄岛区长江西路66号,266580。电话:17667515849。Email:ningwangwink@163.com
通信作者:李玉星,1970年生,教授,博士生导师,现主要从事油、天然气、氢气和二氧化碳管输技术方面的研究工作。地址:山东省青岛市黄岛区长江西路66号。电话:0532-86980919。Email: liyx@upc.edu.cn

更新日期/Last Update: 2024-08-21