[1]宋福霖,赵弘,苗兴园.基于HMOGWO-RF的埋地管道点蚀深度机理-学习预测模型[J].油气储运,2024,43(11):1-17.
 Song Fulin,Zhao Hong,Miao Xingyuan.Mechanism-learning prediction model for pitting corrosion depth of buried pipeline based on HMOGWO-RF[J].Oil & Gas Storage and Transportation,2024,43(11):1-17.
点击复制

基于HMOGWO-RF的埋地管道点蚀深度机理-学习预测模型

参考文献/References:

[1] 李秋扬,赵明华,任学军,王乐乐,冯学书,牛亚琨.中国油气管道建设现状及发展趋势[J].油气田地面工程,2019,38(增刊1):14-17. DOI:10.3969/j.issn.1006-6896.2019.z1.004.
LI Q Y, ZHAO M H, REN X J, WANG L L, FENG X S, NIU Y K. Construction status and development trend of Chinese oil & gas pipeline[J]. Oil-Gas Field Surface Engineering, 2019, 38(S1): 14-17.
[2] 吴志平,陈振华,戴联双,胡亚博,毕武喜.油气管道腐蚀检测技术发展现状与思考[J].油气储运,2020,39(8):851-860. DOI:10.6047/j.issn.1000-8241.2020.08.002.
WU Z P, CHEN Z H, DAI L S, HU Y B, BI W X. Development status and thinking of oil and gas pipeline corrosion detection technology[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 851-860.
[3] 骆正山,徐龙寅,骆济豪,王小完.改进SSA-LSSVM模型在埋地管道点蚀深度预测中的应用[J].安全与环境学报,2023,23(9):3115-3122. DOI:10.13637/j.issn.1009-6094.2022.0395.
LUO Z S, XU L Y, LUO J H, WANG X W. Application of improved SSA-LSSVM model in prediction of pitting depth of buried pipelines[J]. Journal of Safety and Environment, 2023, 23(9): 3115-3122.
[4] SIM S, COLE I S, CHOI Y S, BIRBILIS N. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes[J]. International Journal of Greenhouse Gas Control, 2014, 29: 185-199. DOI: 10.1016/j.ijggc.2014.08.010.
[5] CALEYO F, VELÁZQUEZ J C, VALOR A, HALLEN J M. Probability distribution of pitting corrosion depth and rate in underground pipelines: a Monte Carlo study[J]. Corrosion Science, 2009, 51(9): 1925-1934. DOI: 10.1016/j.corsci.2009.05.019.
[6] 史航.含点蚀埋地长输管道悬空沉降失效评估方法研究[D].大庆:东北石油大学,2023.
SHI H. Study on failure evaluation method of suspended settlement of long-distance pipeline with pitting corrosion[D]. Daqing: Northeast Petroleum University, 2023.
[7] LI X H, GUO M M, ZHANG R R, CHEN G M. A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach[J]. Ocean Engineering, 2022, 261: 112062. DOI: 10.1016/j.oceaneng.2022.112062.
[8] 吕林林,王杰,祁庆芳,郭策,贺蓉蓉,孙小伟.基于KPCA-IGOA-ELM的油气混输管道腐蚀速率预测模型[J].油气储运,2023,42(7):785-792. DOI:10.6047/j.issn.1000-8241.2023.07.007.
LYU L L, WANG J, QI Q F, GUO C, HE R R, SUN X W. Corrosion rate prediction model of oil-gas mixed transportation pipelines based on KPCA-IGOA-ELM[J]. Oil & Gas Storage and Transportation, 2023, 42(7): 785-792.
[9] PENG S B, ZHANG Z, LIU E B, LIU W, QIAO W B. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103716.
[10] 闻亚星,吕坦,国滨,王锋,陈金忠,马义来.基于CART-熵权法的管道腐蚀状态评估及其应用[J].腐蚀与防护,2023,44(9):16-21,100. DOI:10.11973/fsyfh-202309003.
WEN Y X, LYU T, GUO B, WANG F, CHEN J Z, MA Y L. Evaluation and its application of pipeline corrosion status based on CART-entropy weight method[J]. Corrosion and Protection, 2023, 44(9): 16-21, 100.
[11] 吴明,谢飞,陈旭,王丹,孙东旭.埋地油气管道腐蚀失效研究进展及思考[J].油气储运,2022,41(6):712-722. DOI:10.6047/j.issn.1000-8241.2022.06.013.
WU M, XIE F, CHEN X, WANG D, SUN D X. Research progress and thinking on corrosion failure of buried oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 712-722.
[12] 陈一诺,董绍华.基于随机森林算法的管道缺陷预测方法[J].油气储运,2018,37(9):975-979. DOI:10.6047/j.issn.1000-8241.2018.09.003.
CHEN Y N, DONG S H. Pipeline defect prediction method based on Random Forests algorithm[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 975-979.
[13] MIRJALILI S, SAREMI S, MIRJALILI S M, DOS S. COELHO L. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119. DOI: 10.1016/j.eswa.2015.10.039.
[14] 黄文聪,张凤顺,胡滢,余文锦,常雨芳.基于IMOGWO算法的无线电能传输系统参数优化[J/OL].控制工程:1-9[2023-10-20].https://doi.org/10.14107/j.cnki.kzgc.20220596. DOI:10.14107/j.cnki.kzgc.20220596.
HUANG W C, ZHANG F S, HU Y, YU W J, CHANG Y F. Parameter optimization of wireless power transfer system based on IMOGWO algorithm[J/OL]. Control Engineering of China: 1-9[2023-10-20]. https://doi.org/10.14107/j.cnki.kzgc.20220596.
[15] AL-KAYSSI A W. Use of water retention data and soil physical quality index S to quantify hard-setting and degree of soil compactness indices of gypsiferous soils[J]. Soil and Tillage Research, 2021, 206: 104805. DOI: 10.1016/j.still.2020.104805.
[16] DE MELO L B B, SILVA B M, PEIXOTO D S, CHIARINI T P A, DE OLIVEIRA G C, CURI N. Effect of compaction on the relationship between electrical resistivity and soil water content in oxisol[J]. Soil and Tillage Research, 2021, 208: 104876. DOI: 10.1016/j.still.2020.104876.
[17] HUSSON O, HUSSON B, BRUNET A, BABRE D, ALARY K, SARTHOU J P, et al. Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems[J]. Analytica Chimica Acta, 2016, 906: 98-109. DOI: 10.1016/j.aca.2015.11.052.
[18] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[19] XIA Y Y, ZHANG C, WANG C X, LIU H J, SANG X X, LIU R, et al. Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning[J]. Tunnelling and Underground Space Technology, 2023, 140: 105319. DOI: 10.1016/j.tust.2023.105319.
[20] 方晓彤,张立涛,闫秀霞,董春肖.基于BAS-BP神经网络的医药供应链协同绩效智能评价[J].计算机应用与软件,2023,40(8):59-66,113. DOI:10.3969/j.issn.1000-386x.2023.08.010.
FANG X T, ZHANG L T, YAN X X, DONG C X. Intelligent evaluation of pharmaceutical supply chain collaborative performance based on BAS-BP neural network[J]. Computer Applications and Software, 2023, 40(8): 59-66, 113.
[21] 梁海波,王怡,贾武升.基于机器学习的天然气钢质管道缺陷检测方法研究[J].安全与环境学报,2023,23(10):3528-3537. DOI:10.13637/j.issn.1009-6094.2022.1150.
LIANG H B, WANG Y, JIA W S. Research on defect detection method for natural gas steel pipeline based on machine learning[J]. Journal of Safety and Environment, 2023, 23(10): 3528-3537.
[22] VELÁZQUEZ J C, CALEYO F, VALOR A, HALLEN J M. Predictive model for pitting corrosion in buried oil and gas pipelines[J]. Corrosion, 2009, 65(5): 332-342. DOI: 10.5006/1.3319138.

相似文献/References:

[1]周祥.埋地钢质管道外涂层缺陷的安全质量分级评价[J].油气储运,2011,30(04):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
 Zhou Xiang.Safety quality grading evaluation on the external coating defects of buried steel pipeline[J].Oil & Gas Storage and Transportation,2011,30(11):299.[doi:10.6047/j.issn.1000-8241.2011.04.017]
[2]付吉强,吴明,杜明俊,等.埋地管道周围土壤湿热耦合相变过程的数值计算[J].油气储运,2011,30(01):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
 Fu Jiqiang,Wu Ming,Du Mingjun,et al.Numerical calculation on heat-moisture coupling and phase change process of the soil around buried pipeline[J].Oil & Gas Storage and Transportation,2011,30(11):30.[doi:10.6047/j.issn.1000-8241.2011.01.008]
[3]陈杨,王为民,陈伟聪,等.基于故障树与模糊理论的埋地管道风险评价[J].油气储运,2011,30(07):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
 Chen Yang,Wang Weimin,Chen Weicong,et al.Risk assessment of the buried pipeline based on the fault tree and fuzzy theory[J].Oil & Gas Storage and Transportation,2011,30(11):481.[doi:10.6047/j.issn.1000-8241.2011.07.001]
[4]胡士信,陆家榆,张本革,等.邻近强电线路管道交流干扰参数的测试方法[J].油气储运,2011,30(03):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
 Hu Shixin,Lu Jiayu,Zhang Benge,et al.Test method of AC interference parameters for pipeline adjacent power transmission lines[J].Oil & Gas Storage and Transportation,2011,30(11):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
[5]李朝阳,马贵阳,刘亮.埋地输油管道泄漏油品扩散模拟[J].油气储运,2011,30(09):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
 Li Zhaoyang,Ma Guiyang,Liu Liang,et al.Diffusion simulation on leaked oil for buried pipelines[J].Oil & Gas Storage and Transportation,2011,30(11):674.[doi:10.6047/j.issn.1000-8241.2011.09.008]
[6]王鸿膺,蒋涛,秦晓霞,等.川气东送管道土壤腐蚀埋片试验[J].油气储运,2010,29(10):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
 Wang Hongying,Jiang Tao,Qin Xiaoxia.Field Coupon Testing on the Soil Corrosivity of Sichuan-East Gas Pipeline[J].Oil & Gas Storage and Transportation,2010,29(11):769.[doi:10.6047/j.issn.1000-8241.2010.10.013]
[7]薛致远,张丰,毕武喜,等.东北管网阴极保护通电/断电电位测量与分析[J].油气储运,2010,29(10):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
 Xue Zhiyuan,Zhang Feng,Bi Wuxi.The Measurement and Analysis of On/Off-potential in Northeast Oil Pipeline Networks[J].Oil & Gas Storage and Transportation,2010,29(11):772.[doi:10.6047/j.issn.1000-8241.2010.10.014]
[8]刘仕鳌 蒲红宇 刘书文 蒋洪.埋地管道应力分析方法[J].油气储运,2012,31(4):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
 Liu Shiao,Pu Hongyu,Liu Shuwen,et al.Stress analysis method of buried pipeline[J].Oil & Gas Storage and Transportation,2012,31(11):274.[doi:10.6047/j.issn.1000-8241.2012.04.009]
[9]吴峰,李向阳,张治军.埋地参数对管道同沟敷设传热的影响[J].油气储运,2010,29(11):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
 Wu Feng,Li Xiangyang,Zhang Zhijun.Influence of Buried Parameters for Heat Transfer of Pipelines Laid in One Ditch[J].Oil & Gas Storage and Transportation,2010,29(11):835.[doi:10.6047/j.issn.1000-8241.2010.11.009]
[10]赵雄,周卫军,郭瑞.SPAE评价法在管道防腐层性能评价中的应用[J].油气储运,2009,28(11):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]
 ZHAO Xiong,ZHOU Weijun.Application of SPAE Method in Coating Performance Evaluation of Pipelines[J].Oil & Gas Storage and Transportation,2009,28(11):54.[doi:10.6047/j.issn.1000-8241.2009.11.015]

备注/Memo

基金项目:国家自然科学基金资助项目“海底油气管道封堵致振机理及气动减振控制方法研究”,51575528;中国石油大学(北京)前瞻导向及培育项目,2462022QEDX011。
作者简介:宋福霖,男,1998年生,在读博士生,2020年毕业于辽宁石油化工大学过程装备与控制工程专业,现主要从事无损检测研究方向。地址:北京市昌平区府学路18号,102249。电话:13342127149。Email:2379991464@qq.com
作者:赵弘,女,1975年生,教授,博士生导师,2003年博士毕业于西安交通大学机械电子工程专业,现主要从事无损检测研究方向。地址:北京市昌平区府学路18号,102299。电话:13522390529,Email:hzhao_cn@163.com

更新日期/Last Update: 2024-09-09