[1]杨阳,李成志,杜选,等.基于KNN和随机森林算法的腐蚀泄漏风险软检测模型[J].油气储运,2024,43(08):1-14.
 YANG Yang,LI Chengzhi,DU Xuan,et al.Soft detection model of corrosion leakage based on KNN and random forest algorithm[J].Oil & Gas Storage and Transportation,2024,43(08):1-14.
点击复制

基于KNN和随机森林算法的腐蚀泄漏风险软检测模型

参考文献/References:

[1] 金龙,陈樑,王海燕,张昇.不同土壤对输气管道泄漏扩散影响模拟分析[J].石油与天然气化工,2020,49(4):101-108. DOI:10.3969/j.issn.1007-3426.2020.04.018.
JIN L, CHEN L, WANG H Y, ZHANG S. Simulation analysis of the influence of different soil on gas pipeline leakage and diffusion[J]. Chemical Engineering of Oil and Gas, 2020, 49(4): 101-108.
[2] 高琳,曹建国.管道泄漏检测方法研究综述[J].现代制造工程,2022(2):154-162. DOI:10.16731/j.cnki.1671-3133.2022.02.024.
GAO L, CAO J G. Review of diagnostic technique for pipe leakage[J]. Modern Manufacturing Engineering, 2022(2): 154-162.
[3] 谭震,郭新蕾,李甲振,郭永鑫,潘佳佳.基于多尺度卷积神经网络的管道泄漏检测模型研究[J].水利学报,2023,54(2):220-231. DOI:10.13243/j.cnki.slxb.20220644.
TAN Z, GUO X L, LI J Z, GUO Y X, PAN J J. Multi-scale convolutional neural network model for pipeline leak detection[J]. Journal of Hydraulic Engineering, 2023, 54(2): 220-231.
[4] 罗宗林.城市直埋燃气管道泄漏扩散对环境影响的研究[D].哈尔滨:哈尔滨工业大学,2021.
LUO Z L. Study on environmental impact of leakage and diffusion of urban directly buried gas pipeline[D]. Harbin: Harbin Institute of Technology, 2021.
[5] HU Z K, CHEN B Q, CHEN W L, TAN D B, SHEN D T. Review of model-based and data-driven approaches for leak detection and location in water distribution systems[J]. Water Supply, 2021, 21(7): 3282-3306. DOI: 10.2166/ws.2021.101.
[6] 戴海霞,李文.基于Spearman秩相关系数与AHP法的天然气管道运行风险绩效评估[J].山东化工,2023,52(2):178-181. DOI:10.3969/j.issn.1008-021X.2023.02.050.
DAI H X, LI W. Natural gas pipeline operation risk performance evaluation based on Spearman’s rank correlation coefficient and AHP method[J]. Shandong Chemical Industry, 2023, 52(2): 178-181.
[7] 姜礼涛,周爱红,刘超.基于灰色关联度的隧洞围岩分类研究[J].河北地质大学学报,2022,45(4):58-64. DOI:10.13937/j.cnki.hbdzdxxb.2022.04.009.
JIANG L T, ZHOU A H, LIU C. Study on classification of tunnel surrounding rock based on grey correlation degree[J]. Journal of Hebei GEO University, 2022, 45(4): 58-64.
[8] 赵源上,林伟芳.基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J].中国电力,2023,56(5):193-202. DOI:10.11930/j.issn.1004-9649.202212032.
ZHAO Y S, LIN W F. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson’s correlation coefficient[J]. Electric Power, 2023, 56(5): 193-202.
[9] 纪德洋,金锋,冬雷,张姗,于坤洋.基于皮尔逊相关系数的光伏电站数据修复[J].中国电机工程学报,2022,42(4):1514-1522. DOI:10.13334/j.0258-8013.pcsee.211172.
JI D Y, JIN F, DONG L, ZHANG S, YU K Y. Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1522.
[10] SELVY P T, RAGUL M, VIGNESH G N, ANITHA M. Real time efficient accident predictor system using machine learning techniques (kNN, RF,LR, DT)[J]. International Journal of Engineering and Advanced Technology, 2020, 10(2): 108-111. DOI: 100.1/ijeat.D6910049420.
[11] 宫彦双,谷坛,安超,张爱良,廖柯熹.基于Pearson相关系数的集输管道流动腐蚀主控因素分析[J].石油与天然气化工,2021,50(2):93-99. DOI:10.3969/j.issn.1007-3426.2021.02.016.
GONG Y S, GU T, AN C, ZHANG A L, LIAO K X. Analysis of main control factors for flow corrosion of gathering and transportation pipeline based on Pearson correlation coefficient[J]. Chemical Engineering of Oil and Gas, 2021, 50(2): 93-99.
[12] 陈世群,高伟,陈孝琪,涂彦昭,杨艳.一种基于极限学习机和皮尔逊相关系数的光伏阵列故障快速诊断方法[J].电气技术,2021,22(10):57-64. DOI:10.3969/j.issn.1673-3800.2021.10.010.
CHEN S Q, GAO W, CHEN X Q, TU Y Z, YANG Y. A fast fault diagnosis method for photovoltaic array via extreme learning machine and Pearson’s correlation coefficient[J]. Electrical Engineering, 2021, 22(10): 57-64.
[13] 姚梦月.埋地油气管道外腐蚀速率及剩余寿命预测模型优化研究[D].西安:西安建筑科技大学,2020.
YAO M Y. Study on the optimization of prediction model for the external corrosion rate and residual life of buried oil and gas pipelines[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
[14] XUE X M, ZHOU J Z. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery[J]. ISA Transactions, 2017, 66: 284-295. DOI: 10.1016/j.isatra.2016.10.014.
[15] ZHANG J, BIAN Z K, WANG S T. Self-paced and Bayes-decision-rule linear KNN prediction[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(11): 3267-3283. DOI: 10.1007/s13042-022-01593-9.
[16] 郭小萍,滕佳岐,李元.基于EEMD-kNN的工业过程微小故障检测[J].计算机应用与软件,2023,40(4):36-40,53. DOI:10.3969/j.issn.1000-386x.2023.04.007.
GUO X P, TENG J Q, LI Y. Incipient fault detection for industry process based on EEMD-kNN[J]. Computer Applications and Software, 2023, 40(4): 36-40, 53.
[17] 刘培栋,刘立巍,李明,赵光,刘书元,邵壮,等.基于KNN和RF结合的供热机组热负荷预测研究[J].全球能源互联网,2021,4(6):595-601. DOI:10.19705/j.cnki.issn2096-5125.2021.06.009.
LIU P D, LIU L W, LI M, ZHAO G, LIU S Y, SHAO Z, et al. Research on heat load forecasting of heating unit based on combination of KNN and RF[J]. Journal of Global Energy Interconnection, 2021, 4(6): 595-601.
[18] 陈智鹏.基于遗传KNN聚类的机械加工故障趋势预测模型[J].机械与电子,2019,37(5):59-62,70. DOI:10.3969/j.issn.1001-2257.2019.05.014.
CHEN Z P. Fault trend prediction model of machining based on genetic KNN clustering[J]. Machinery & Electronics, 2019, 37(5): 59-62, 70.
[19] 李洪奇,杨中国,朱丽萍,刘蔷.基于数据集特征的KNN最优K值预测方法[J].计算机应用与软件,2016,33(6):54-58,83. DOI:10.3969/j.issn.1000-386x.2016.06.014.
LI H Q, YANG Z G, ZHU L P, LIU Q. Prediction method of optimal K value in KNN based on dataset features[J]. Computer Applications and Software, 2016, 33(6): 54-58, 83.
[20] 林艳竹,韩忠,黄林显,邢立亭,梁浩,侯金霄.基于随机森林法的弥河-潍河流域地下水质量评价研究[J].水文,2023,43(3):60-64,70. DOI:10.19797/j.cnki.1000-0852.20210513.
LIN Y Z, HAN Z, HUANG L X, XING L T, LIANG H, HOU J X. Research on groundwater quality assessment of Mihe-Weihe River Basin based on random forest algorithm[J]. Journal of China Hydrology, 2023, 43(3): 60-64, 70.
[21] MADANI A, HAGAGE M, ELBEIH S F. Random forest and logistic regression algorithms for prediction of groundwater contamination using ammonia concentration[J]. Arabian Journal of Geosciences, 2022, 15(20): 1619. DOI: 10.1007/s12517-022-10872-2.
[22] ZHANG H Z, ZIMMERMAN J, NETTLETON D, NORDMAN D J. Random forest prediction intervals[J]. The American Statistician, 2020, 74(4): 392-406. DOI: 10.1080/00031305.2019.1585288.
[23] 骆正山,杨枚桧,王小完,张新生.基于RF-GOA-RVM的海底管道腐蚀速率预测[J].消防科学与技术,2021,40(9):1337-1340. DOI:10.3969/j.issn.1009-0029.2021.09.016.
LUO Z S, YANG M H, WANG X W, ZHANG X S. Prediction of corrosion rate of submarine pipelines based on RF-GOA-RVM[J]. Fire Science and Technology, 2021, 40(9): 1337-1340.
[24] 陈一诺,董绍华.基于随机森林算法的管道缺陷预测方法[J].油气储运,2018,37(9):975-979. DOI:10.6047/j.issn.1000-8241.2018.09.003.
CHEN Y N, DONG S H. Pipeline defect prediction method based on Random Forests algorithm[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 975-979.

备注/Memo

基金项目:中国石油天然气集团有限公司项目“天然气管网及站场智能管控系统研发”,2021DJ7304。
作者简介:杨阳,男,1986年生,工程师,2013年硕士毕业于西南石油大学油气田材料与应用专业,现主要从事油气管道完整性管理、材料科学与工程等专业方向的研究工作。地址:北京市昌平区沙河西沙屯中石油科技园12地块B1座,102206。电话:18210920815。Email:yangyang2021@cnpc.com.cn

更新日期/Last Update: 2024-06-14