[1]朱文卫,许成昊,王兴华,等.高压交流输电线路与并行埋地管道安全距离计算模型[J].油气储运,2024,43(07):1-13.
 ZHU Wenwei,XU Chenghao,WANG Xinghua,et al.Calculation model of the safety distance between high-voltage AC transmission lines and buried pipelines[J].Oil & Gas Storage and Transportation,2024,43(07):1-13.
点击复制

高压交流输电线路与并行埋地管道安全距离计算模型

参考文献/References:

[1] 阮亦根,李自力.超高压交流输电线路与油气管道安全间距研究[J].浙江电力,2019,38(4):92-95. DOI:10.19585/j.zjdl.201904016.
RUAN Y G, LI Z L. Study on safety distance between UHV transmission lines and gas pipelines[J]. Zhejiang Electric Power, 2019, 38(4): 92-95.
[2] SHABANGU T H, SHRIVASTAVA P, ABE B T, ADEDEJI K B, OLUBAMBI P A. Influence of AC interference on the cathodic protection potentials of pipelines: towards a comprehensive picture[C]. Cape Town: 2017 IEEE AFRICON, 2017: 597-602.
[3] POPOLI A, SANDROLINI L, CRISTOFOLINI A. Finite element analysis of mitigation measures for AC interference on buried pipelines[C]. Genova: 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, 2019: 1-5.
[4] 袁艺文.架空线路与地埋输气管道间安全距离的风险研究[J].湖北电力,2009,33(4):57-58. DOI:10.3969/j.issn.1006-3986.2009.04.024.
YUAN Y W. Risk research on insufficient safe distance between overhead transmission line and buried gas transmission pipe[J]. Hubei Electric Power, 2009, 33(4): 57-58.
[5] 姜子涛,周冰,董绍华,魏百发,刘冠一,汪麟,等.交流输电线路对管道腐蚀影响的安全距离研究[J].石油科学通报,2021,6(4):638-647. DOI:10.3969/j.issn.2096-1693.2021.04.045.
JIANG Z T, ZHOU B, DONG S H, WEI B F, LIU G Y, WANG L, et al. Research on safety distances between AC transmission lines and buried pipelines for mitigating AC corrosion[J]. Petroleum Science Bulletin, 2021, 6(4): 638-647.
[6] CHRISTOFORIDIS G C, LABRIDIS D P, DOKOPOULOS P S. A hybrid method for calculating the inductive interference caused by faulted power lines to nearby buried pipelines[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1465-1473. DOI: 10.1109/TPWRD.2004.839186.
[7] 杨超,李自力,崔淦,丁小勇.埋地管道与高压交流输电线之间的安全距离[J].腐蚀与防护,2016,37(1):56-59. DOI:10.11973/fsyfh-201601013. 
YANG C, LI Z L, CUI G, DING X Y. Safe distance between buried pipelines and high voltage AC transmission lines[J]. Corrosion and Protection, 2016, 37(1): 56-59.
[8] 孔朝金,李刚,郭发龙,孟虎林,李磊,马勤晟,等.管道与输电线路安全距离标准及做法探讨[J].石油和化工设备,2019,22(9):109-111. DOI:10.3969/j.issn.1674-8980.2019.09.031.
KONG C J, LI G, GUO F L, MENG H L, LI L, MA Q S, et al. Discussion on standard and practice for safety distance between pipeline and power lines[J]. Petro & Chemical Equipment, 2019, 22(9): 109-111.
[9] WANG C Y, LIANG X D, RADONS R. Minimum separation distance between transmission lines and underground pipelines for inductive interference mitigation[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1299-1309. DOI: 10.1109/TPWRD.2019.2941928.
[10] SUN H F, WANG P, CHANG H J, AI X C, E T L, SU B N, et al. Study on electromagnetic influence of 750kV AC transmission lines on multiple buried pipelines[C]. Shenzhen: 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2016: 31-34.
[11] OUADAH M, TOUHAMI O, IBTIOUEN R, BENLAMNOUAR M F, ZERGOUG M. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines[J]. International Journal of Electrical Power & Energy Systems, 2017, 91: 34-41. DOI: 10.1016/j.ijepes.2017.03.005.
[12] QI L, YUAN H, LI L, CUI X. Calculation of interference voltage on the nearby underground metal pipeline due to the grounding fault on overhead transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 965-974. DOI: 10.1109/TEMC.2013.2240391.
[13] POPOLI A, PIEROTTI G, RAGAZZI F, SANDROLINI L, CRISTOFOLINI A. FLARE: a framework for the finite element simulation of electromagnetic interference on buried metallic pipelines[J]. Applied Sciences, 2023, 13(10): 6268. DOI: 10.3390/app13106268.
[14] TRLEP M, HAMLER A, JESENIK M, STUMBERGER B. Electric field distribution under transmission lines dependent on ground surface[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1748-1751. DOI: 10.1109/TMAG.2009.2012806.
[15] TOURAB W, BABOURI A, NEMAMCHA M. Experimental study of electromagnetic environment in the vicinity of high voltage lines[J]. American Journal of Engineering and Applied Sciences, 2011, 4(2): 209-213. DOI: 10.3844/ajeassp.2011.209.213.
[16] WANG C Y, LIANG X D, FRESCHI F. Investigation of factors affecting induced voltages on underground pipelines due to inductive coupling with nearby transmission lines[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1266-1274. DOI: 10.1109/TIA.2020.2966570.
[17] MA J, DAWALIBI F P, SOUTHEY R D. Effects of the changes in IEEE std. 80 on the design and analysis of power system grounding[C]. Kunming: Proceedings. International Conference on Power System Technology, 2002: 974-979.
[18] CRISTOFOLINI A, POPOLI A, SANDROLINI L, PIEROTTI G, SIMONAZZI M. Laplace transform for finite element analysis of electromagnetic interferences in underground metallic structures[J]. Applied Sciences, 2022, 12(2): 872. DOI: 10.3390/app12020872.
[19] 吴小雁.基于时谐场计算方法的超高压输电线磁场影响因素分析[J].电气开关,2016,54(6):61-65. DOI:10.3969/j.issn.1004-289X.2016.06.016.
WU X Y. Study on factors affecting of EHV transmission lines’ magnetic field based on time-harmonic field calculation method[J]. Electric Switcher, 2016, 54(6): 61-65.
[20] 齐磊,崔翔,郭剑,曹玉杰.特高压交流输电线路正常运行时对输油输气管道的感性耦合计算模型[J].中国电机工程学报,2010,30(21):121-126. DOI:10.13334/j.0258-8013.pcsee.2010.21.001.
QI L, CUI X, GUO J, CAO Y J. Inductive coupling modelling of normally operating UHV AC transmission line to adjacent oil/gas pipeline[J]. Proceedings of the CSEE, 2010, 30(21): 121-126.

相似文献/References:

[1]胡士信,陆家榆,张本革,等.邻近强电线路管道交流干扰参数的测试方法[J].油气储运,2011,30(03):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
 Hu Shixin,Lu Jiayu,Zhang Benge,et al.Test method of AC interference parameters for pipeline adjacent power transmission lines[J].Oil & Gas Storage and Transportation,2011,30(07):203.[doi:10.6047/j.issn.1000-8241.2011.03.012]
[2]张贵喜,唐和清,金鑫,等.高压输电线路对埋地钢质管道的腐蚀影响[J].油气储运,2011,30(02):125.[doi:10.6047/j.issn.1000-8241.2011.02.012]
 Zhang Guixi,Tang Heqing,Jin Xin,et al.Effects of high-voltage power line on corrosion of buried steel pipeline[J].Oil & Gas Storage and Transportation,2011,30(07):125.[doi:10.6047/j.issn.1000-8241.2011.02.012]
[3]刘志军,陈大庆,金哲,等.埋地钢质管道交流腐蚀的评价准则[J].油气储运,2011,30(09):690.[doi:10.6047/j.issn.1000-8241.2011.09.012]
 Liu Zhijun,Chen Daqing,Jin Zhe,et al.Assessment code for AC corrosion of buried steel pipe[J].Oil & Gas Storage and Transportation,2011,30(07):690.[doi:10.6047/j.issn.1000-8241.2011.09.012]
[4]郝宏娜 李自力 衣华磊 王太源 尚兴彬 谢跃辉.能源公共走廊内管道交流干扰腐蚀判断准则[J].油气储运,2012,31(4):283.[doi:10.6047/j.issn.1000-8241.2012.04.011]
 Hao Hongna,Li Zili,Yi Hualei,et al.Criterion for pipeline AC interference corrosion in the public energy corridor[J].Oil & Gas Storage and Transportation,2012,31(07):283.[doi:10.6047/j.issn.1000-8241.2012.04.011]
[5]赵君 姜云鹏 徐承伟 苏磊 薛致远 刘玲莉 薛泉.埋地管道交流干扰及其缓解模拟[J].油气储运,2013,32(8):895.[doi:10.6047/j.issn.1000-8241.2013.08.020]
 Zhao Jun,Jiang Yunpeng,Xu Chengwei,et al.AC interference investigation and simulation assessment of buried pipeline[J].Oil & Gas Storage and Transportation,2013,32(07):895.[doi:10.6047/j.issn.1000-8241.2013.08.020]
[6]杜艳霞 沙晓东 刘骁. 江西天然气管道交流干扰检测与防护[J].油气储运,2014,33(1):56.[doi:10.6047/j.issn.1000-8241.2014.01.011]
 DU Yanxia,SHA Xiaodong,LIU Xiao. Detection and prevention of AC interference in Jiangxi Natural Gas Pipeline[J].Oil & Gas Storage and Transportation,2014,33(07):56.[doi:10.6047/j.issn.1000-8241.2014.01.011]
[7]薛致远,赵君,何岚,等.油气管道交流干扰防护技术发展现状[J].油气储运,2014,33(12):1272.[doi:10.6047/j.issn.1000-8241.2014.12.003]
 XUE Zhiyuan,ZHAO Jun,HE Lan,et al.Development of AC interference mitigation technology of oil and gas pipelines[J].Oil & Gas Storage and Transportation,2014,33(07):1272.[doi:10.6047/j.issn.1000-8241.2014.12.003]
[8]刘国.固态去耦合器在管道交流干扰防护中的应用[J].油气储运,2016,35(4):449.[doi:10.6047/j.issn.1000-8241.2016.04.019]
 LIU Guo.Application of solid state-decoupler in AC interference mitigation of pipelines[J].Oil & Gas Storage and Transportation,2016,35(07):449.[doi:10.6047/j.issn.1000-8241.2016.04.019]
[9]刘国 原海嵘 杜艳霞.钳位式排流器的原理及对阴极保护的影响[J].油气储运,2017,36(预出版):1.
 LIU Guo,YUAN Hairong,DU Yanxia.Principle of clamping diode and its influence on cathodic protection[J].Oil & Gas Storage and Transportation,2017,36(07):1.
[10]刘国,原海嵘,杜艳霞.钳位式排流器的原理及对阴极保护的影响[J].油气储运,2017,36(8):937.[doi:10.6047/j.issn.1000-8241.2017.08.011]
 LIU Guo,YUAN Hairong,DU Yanxia.Principle of clamping diode and its influence on cathodic protection[J].Oil & Gas Storage and Transportation,2017,36(07):937.[doi:10.6047/j.issn.1000-8241.2017.08.011]
[11]朱文卫,许成昊,王兴华,等.高压交流输电线路与并行埋地管道安全距离计算模型[J].油气储运,2024,43(07):778.[doi:10.6047/j.issn.1000-8241.2024.07.007]
 ZHU Wenwei,XU Chenghao,WANG Xinghua,et al.Computational model of safe distance between HVAC transmission line and parallel buried pipeline[J].Oil & Gas Storage and Transportation,2024,43(07):778.[doi:10.6047/j.issn.1000-8241.2024.07.007]

备注/Memo

基金项目:广东电网科技项目“交流输电线路对油气管道的影响及其规律、标准化防护方案及效果评价研究”,GDKJXM20220860)。
作者简介:朱文卫,男,1985年生,高级工程师,2008年硕士毕业于西安交通大学电气工程及其自动化专业,现主要从事输电线路专业方向的研究工作。地址:广东省广州市海珠区琶洲街道琶洲大道55号,510330。电话:15876531968。Email:735228815@qq.com

更新日期/Last Update: 2024-05-09