[1]殷布泽 黄维和 苗青 闫锋 欧阳欣 胡其会 宋光春 李玉星.CO2减压特性和裂纹扩展研究现状及发展趋势[J].油气储运,2023,42(09):1-18.
 YIN Buze,HUANG Weihe,MIAO Qing,et al.Analysis and Development Trends of Research on CO2 Decompression Characteristics and Crack Propagation[J].Oil & Gas Storage and Transportation,2023,42(09):1-18.
点击复制

CO2减压特性和裂纹扩展研究现状及发展趋势

参考文献/References:

[1] 胡其会,李玉星,张建,俞欣然,王辉,王武昌,等. “双碳”战略下中国CCUS技术现状及发展建议[J].油气储运,2022,41(4):361-371. DOI:10.6047/j.issn.1000-8241.2022.04.001.

HU Q H, LI Y X, ZHANG J, YU X R, WANG H, WANG W C, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil and Gas Storage and Transportation, 2022, 41(4): 361-371.

[2] 严刚,郑逸璇,王雪松,李冰,何捷,邵朱强,等.基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究,2022,35(2):309-319. DOI:10.13198/j.issn.1001-6929.2021.11.13.

YAN G, ZHENG Y X, WANG X S, LI B, HE J, SHAO Z Q, et al. Pathway for carbon dioxide peaking in China based on sectoral analysis[J]. Research of Environmental Sciences, 2022, 35(2): 309-319.

[3] 张卫东,张栋,田克忠.碳捕集与封存技术的现状与未来[J].中外能源,2009,14(11):7-14.

ZHANG W D, ZHANG D, TIAN K Z. Carbon capture and sequestration technology[J]. Sino-Global Energy, 2009, 14(11): 7-14.

[4] LU H F, MA X, HUANG K, FU L D, AZIMI M. Carbon dioxide transport via pipelines: a systematic review[J]. Journal of Cleaner Production, 2020, 266: 121994. DOI: 10.1016/j.jclepro.2020.121994.

[5] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 465-482.

[6] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. The decompression behaviour of carbon dioxide in the dense phase[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 447-464.

[7] HAN S H, KIM J, CHANG D. An experimental investigation of liquid CO2 release through a capillary tube[J]. Energy Procedia, 2013, 37: 4724-4730. DOI: 10.1016/j.egypro.2013.06.381.

[8] XIE Q Y, TU R, JIANG X, LI K, ZHOU X J. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130: 574-580. DOI: 10.1016/j.apenergy.2014.01.088.

[9] LI K, ZHOU X J, TU R, XIE Q Y, JIANG X. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71: 665-672. DOI: 10.1016/j.energy.2014.05.005.

[10] DRESCHER M, VARHOLM K, MUNKEJORD S T, HAMMER M, HELD R, DE KOEIJER G. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457. DOI: 10.1016/j.egypro.2014.11.267.

[11] AHMAD M, LOWESMITH B, DE KOEIJER G, NILSEN S, TONDA H, SPINELLI C, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353. DOI: 10.1016/j.ijggc.2015.04.001.

[12] VREE B, AHMAD M, BUIT L, FLORISSON O. Rapid depressurization of a CO2 pipeline–an experimental study[J]. International Journal of Greenhouse Gas Control, 2015, 41: 41-49. DOI: 10.1016/j.ijggc.2015.06.011.

[13] 赵青.含杂质CO2不同相态管输节流及减压特性研究[D].青岛:中国石油大学(华东),2015.

ZHAO Q. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase[D]. Qingdao: China University of Petroleum(East China), 2015.

[14] 喻健良,郭晓璐,闫兴清,张永春,陈绍云.工业规模CO2管道泄放过程中的压力响应及相态变化[J].化工学报,2015,66(11):4327-4334. DOI:10.11949/j.issn.0438-1157.20150700.

YU J L, GUO X L, YAN X Q, ZHANG Y C, CHEN S Y. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334.

[15] BOTROS K K, GEERLIGS J, ROTHWELL B, ROBINSON T. Measurements of decompression wave speed in binary mixtures of carbon dioxide and impurities[J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021301. DOI: 10.1115/1.4034016.

[16] MARTYNOV S, ZHENG W T, MAHGEREFTEH H, BROWN S, HEBRARD J, JAMOIS D, et al. Computational and experimental study of solid-phase formation during the decompression of high-pressure CO2 pipelines[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 7054-7063. DOI: 10.1021/acs.iecr.8b00181.

[17] 顾帅威.不同相态CO2管道减压过程流动与温降特性研究[D].青岛:中国石油大学(华东),2019.

GU S W. A study on the flow characteristics and temperature drop of CO2 pipelines in different phase states[D]. Qingdao: China University of Petroleum(East China), 2019.

[18] CLAUSEN S, OOSTERKAMP A, STRØM K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. DOI: 10.1016/j.egypro.2012.06.044.

[19] 喻健良,朱海龙,郭晓璐,闫兴清,曹琦,刘少荣.超临界CO2管道减压过程中的热力学特性[J].化工学报,2017,68(9):3350-3357. DOI:10.11949/j.issn.0438-1157.20170154.

YU J L, ZHU H L, GUO X L, YAN X Q, CAO Q, LIU S R. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357.

[20] 郭晓璐. CO2管道泄漏中介质压力响应、相态变化和扩散特性研究[D].大连:大连理工大学,2017.

GUO X L. Pressure response, phase transition and dispersion characteristics during CO2 pipeline releases[D]. Dalian: Dalian University of Technology, 2017.

[21] GUO X L, YAN X Q, YU J L, ZHANG Y C, CHEN S Y, MAHGEREFTEH H, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197. DOI: 10.1016/j.apenergy.2016.06.026.

[22] GUO X L, YAN X Q, YU J L, YANG Y, ZHANG Y C, CHEN S Y, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078. DOI: 10.1016/j.energy.2016.10.133.

[23] GUO X L, YAN X Q, YU J L, ZHANG Y C, CHEN S Y, MAHGEREFTEH H, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 183: 1279-1291. DOI: 10.1016/j.apenergy.2016.09.088.

[24] GUO X L, YAN X Q, ZHENG Y G, YU J L, ZHANG Y C, CHEN S Y, et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline[J]. Energy, 2017, 119: 53-66. DOI: 10.1016/j.energy.2016.12.048.

[25] CAO Q, YAN X Q, GUO X L, ZHU H L, LIU S R, YU J L. Temperature evolution and heat transfer during the release of CO2 from a large-scale pipeline[J]. International Journal of Greenhouse Gas Control, 2018, 74: 40-48. DOI: 10.1016/j.ijggc.2018.04.015.

[26] MUNKEJORD S T, AUSTEGARD A, DENG H, HAMMER M, STANG H G J, LØVSETH S W. Depressurization of CO2 in a pipe: high-resolution pressure and temperature data and comparison with model predictions[J]. Energy, 2020, 211: 118560. DOI: 10.1016/j.energy.2020.118560.

[27] HAN S H, CHANG D, KIM J, CHANG W. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier[J]. Process Safety and Environmental Protection, 2014, 92(1): 60-69. DOI: 10.1016/j.psep.2013.10.003.

[28] 刘锋.超临界压力CO2管道泄漏特征与扩散规律研究[D].北京:清华大学,2016.

LIU F. Study on the leakage and diffusion behavior of supercritical pressure CO2 from pipelines[D]. Beijing: Tsinghua University, 2016.

[29] XU B P, JIE H E, WEN J X. A pipeline depressurization model for fast decompression and slow blowdown[J]. International Journal of Pressure Vessels and Piping, 2014, 123/124: 60-69. DOI: 10.1016/j.ijpvp.2014.07.003.

[30] BROWN S, MARTYNOV S, MAHGEREFTEH H, CHEN S, ZHANG Y. Modelling the non-equilibrium two-phase flow during depressurisation of CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2014, 30: 9-18. DOI: 10.1016/j.ijggc.2014.08.013.

[31] ELSHAHOMI A, LU C, MICHAL G, LIU X, GODBOLE A, VENTON P. Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015, 140: 20-32. DOI: 10.1016/j.apenergy.2014.11.054.

[32] FLECHAS T, LABOUREUR D M, GLOVER C J. A 2-D CFD model for the decompression of carbon dioxide pipelines using the Peng-Robinson and the Span-Wagner equation of state[J]. Process Safety and Environmental Protection, 2020, 140: 299-313. DOI: 10.1016/j.psep.2020.04.033.

[33] GU S W, LI Y X, TENG L, HU Q H, ZHANG D T, YE X, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J]. Process Safety and Environmental Protection, 2018, 120: 237-247. DOI: 10.1016/j.psep.2018.08.034.

[34] 李玉星,王财林,胡其会,龚霁昱.含杂质超临界CO2管道减压波波速的预测模型[J].油气储运,2021,40(9):1027-1032. DOI:10.6047/j.issn.1000-8241.2021.09.008.

LI Y X, WANG C L, HU Q H, GONG J Y. Prediction model of decompression wave velocity in supercritical CO2 pipelines containing impurities[J]. Oil & Gas Storage and Transportation, 2021, 40(9): 1027-1032.

[35] 顾帅威,滕霖,李玉星,胡其会,张大同,王财林.含杂质气态CO2管道减压波传播特性[J].石油化工,2018,47(7):689-695. DOI:10.3969/j.issn.1000-8144.2018.07.008.

GU S W, TENG L, LI Y X, HU Q H, ZHANG D T, WANG C L. Propagation characteristics of decompression wave for gaseous CO2 in pipeline containing impurities[J]. Petrochemical Technology, 2018, 47(7): 689-695.

[36] DALL’ACQUA D, TERENZI A, LEPORINI M, D’ALESSANDRO V, GIACCHETTA G, MARCHETTI B. A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state[J]. Applied Energy, 2017, 206: 1432-1445. DOI: 10.1016/j.apenergy.2017.09.118.

[37] NICHITA D V, KHALID P, BROSETA D. Calculation of isentropic compressibility and sound velocity in two-phase fluids[J]. Fluid Phase Equilibria, 2010, 291(1): 95-102. DOI: 10.1016/j.fluid.2009.12.022.

[38] MAHGEREFTEH H, BROWN S, MARTYNOV S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2012, 2(5): 369-379. DOI: 10.1002/ghg.1302.

[39] MAHGEREFTEH H, ZHANG P, BROWN S. Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines[J]. International Journal of Greenhouse Gas Control, 2016, 46: 39-47. DOI: 10.1016/j.ijggc.2015.12.021.

[40] PICARD D J, BISHNOI P R. The importance of real-fluid behavior and nonisentropic effects in modeling decompression characteristics of pipeline fluids for application in ductile fracture propagation analysis[J]. The Canadian Journal of Chemical Engineering, 1988, 66(1): 3-12. DOI: 10.1002/cjce.5450660101.

[41] AURSAND E, AURSAND P, HAMMER M, LUND H. The influence of CO2 mixture composition and equations of state on simulations of transient pipeline decompression[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 599-609. DOI: 10.1016/j.ijggc.2016.07.004.

[42] JIE H E, XU B P, WEN J X, COOPER R, BARNETT J. Predicting the decompression characteristics of carbon dioxide using computational fluid dynamics[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 585-595.

[43] 鲁寨军,严利果,肖程欢,姚术健.高压CO2管道泄漏的瞬态行为数值研究[J].安全与环境学报,2021,21(2):758-763. DOI:10.13637/j.issn.1009-6094.2020.1363.

LU Z J, YAN L G, XIAO C H, YAO S J. Numerical study on the transient behavior of high-pressure CO2 pipeline leakage[J]. Journal of Safety and Environment, 2021, 21(2): 758-763.

[44] 鲁寨军,王甲强,张梓轩,孙永龙,王根达,刘东润.基于查表插值算法的高压CO2管道泄漏瞬态特性数值模拟[J].安全与环境学报,2023,23(2):442-450. DOI:10.13637/j.issn.1009-6094.2021.1814.

LU Z J, WANG J Q, ZHANG Z X, SUN Y L, WANG G D, LIU D R. Numerical study on the transient behaviour of high-pressure CO2 pipeline leakage based on lookup table interpolation algorithm[J]. Journal of Safety and Environment, 2023, 23(2): 442-450.

[45] XIAO C H, LU Z J, YAN L G, YAO S J. Transient behaviour of liquid CO2 decompression: CFD modelling and effects of initial state parameters[J]. International Journal of Greenhouse Gas Control, 2020, 101: 103154. DOI: 10.1016/j.ijggc.2020.103154.

[46] BARNETT J, COOPER R. An operator’s perspective on fracture control in dense phase CO2 pipelines[C]. Calgary: 2016 11th International Pipeline Conference, 2016: V003T05A013.

[47] PORTER R T J, MAHGEREFTEH H, BROWN S, MARTYNOV S, COLLARD A, WOOLLEY R M, et al. Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: an overview of aims, objectives and main findings[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 662-681. DOI: 10.1016/j.ijggc.2016.08.011.

[48] WOOLLEY R M, FAIRWEATHER M, WAREING C J, FALLE S A E G, MAHGEREFTEH H, MARTYNOV S, et al. CO2PipeHaz: quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529. DOI: 10.1016/j.egypro.2014.11.274.

[49] DI BIAGIO M, LUCCI A, MECOZZI E, SPINELLI C M. Fracture propagation prevention on CO2 pipelines: full scale experimental testing and verification approach[C]. Colorado Springs: Pipeline Technology Conference 2017, 2017: 1-17.

[50] LINTON V, LEINUM B H, NEWTON R, FYRILEIV O. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines—part 1: project overview and outcomes of test 1[C]. Calgary: 2018 12th International Pipeline Conference, 2018: V003T05A008.

[51] 国家管网.国内首次!二氧化碳管道全尺寸爆破试验成功完成[EB/OL].(2023-05-18)[2023-06-08]. http://www.jshmzc.com/hmzc/gn/content/8be0a929-51e5-4726-90b3-57dac1106cb7.html.

PipeChina. For the first time in China! Successfully completed full-scale explosion test for carbon dioxide pipeline[EB/OL]. (2023-05-18)[2023-06-08]. http://www.jshmzc.com/hmzc/gn/content/8be0a929-51e5-4726-90b3-57dac1106cb7.html.

[52] MAXEY W A. Long shear fractures in CO2 lines controlled by regulating saturation, arrest pressures[J]. Oil & Gas Journal, 1986, 84(31): 44-46.

[53] RUDLAND D, SHIM D J, XU H, RIDER D, MINCER P, SHOEMAKER D, et al. First major improvements to the two-curve ductile fracture model-part I main body: 03-G78-01[R]. Columbus: Engineering Mechanics Corporation of Columbus, 2007: 56-112.

[54] HU Q H, ZHANG N, LI Y X, WANG W C, ZHU J L, GONG J Y. A new model for calculation of arrest toughness in the fracture process of the supercritical CO2 pipeline[J]. ACS Omega, 2021, 6(26): 16804-16815. DOI: 10.1021/acsomega.1c01360.

[55] SKARSVÅG H L, HAMMER M, MUNKEJORD S T, LOG A M, DUMOULIN S, GRUBEN G. Towards an engineering tool for the prediction of running ductile fractures in CO2 pipelines[J]. Process Safety and Environmental Protection, 2023, 171: 667-679. DOI: 10.1016/j.psep.2023.01.054.

[56] GUO X L, XU S Q, CHEN G J, YAN X Q, CAO Q. Fracture criterion and control plan on CO2 pipelines: theory analysis and full-bore rupture (FBR) experimental study[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104394. DOI: 10.1016/j.jlp.2021.104394.

[57] MARTYNOV S, BROWN S, MAHGEREFTEH H, SUNDARA V, CHEN S Y, ZHANG Y C. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J]. Process Safety and Environmental Protection, 2014, 92(1): 36-46. DOI: 10.1016/j.psep.2013.10.004.

[58] AURSAND E, DUMOULIN S, HAMMER M, LANGE H I, MORIN A, MUNKEJORD S T, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid–structure model[J]. Engineering Structures, 2016, 123: 192-212. DOI: 10.1016/j.engstruct.2016.05.012.

[59] 金峤,孙泽宇,孙威.内压波动下的CO2管道轴向表面裂纹疲劳扩展研究[J].工程力学,2015,32(5):84-93. DOI:10.6052/j.issn.1000-4750.2013.11.1043.

JIN Q, SUN Z Y, SUN W. Study on fatigue crack growth in CO2 pipelines with an axial surface crack under pulsating internal pressure[J]. Engineering Mechanics, 2015, 32(5): 84-93.

[60] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018.

REN K. Study on theory and control method of supercritical carbon dioxide pipe fracture[D]. Xi’an: Xi’an Shiyou University, 2018.

[61] KEIM V, PAREDES M, NONN A, MÜNSTERMANN S. FSI-simulation of ductile fracture propagation and arrest in pipelines: comparison with existing data of full-scale burst tests[J]. International Journal of Pressure Vessels and Piping, 2020, 182: 104067. DOI: 10.1016/j.ijpvp.2020.104067.

[62] OKODI A, LIN M, YOOSEF-GHODSI N, KAINAT M, HASSANIEN S, ADEEB S. Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104115. DOI: 10.1016/j.ijpvp.2020.104115.

[63] TALEMI R H, BROWN S, MARTYNOV S, MAHGEREFTEH H. Hybrid fluid–structure interaction modelling of dynamic brittle fracture in steel pipelines transporting CO2 streams[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 702-715. DOI: 10.1016/j.ijggc.2016.08.021.

[64] TALEMI R, COOREMAN S, MAHGEREFTEH H, MARTYNOV S, BROWN S. A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 224-235. DOI: 10.1016/j.tafmec.2019.02.005.

[65] ZHEN Y, ZU Y Z, CAO Y G, NIU R Y. Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104136. DOI: 10.1016/j.jngse.2021.104136.

相似文献/References:

[1]赵慧,倪洪亮,王博,等.热泵在原油长输管道的应用前景[J].油气储运,2011,30(04):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
 Zhao Hui,Ni Hongliang,Wang Bo,et al.Application prospect of heat pump in long-distance crude oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(09):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
[2]张伟,许康,齐世明,等.加热炉改烧煤焦油存在的问题[J].油气储运,2011,30(03):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
 Zhang Wei,Xu Kang,Qi Shiming,et al.Problems of adopting coal tar in heater[J].Oil & Gas Storage and Transportation,2011,30(09):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
[3]王永红,李晓平,宫敬.长输管道在线仿真系统的应用与展望[J].油气储运,2011,30(02):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
 Wang Yonghong,Li Xiaoping,Gong Jing.The application and futurity of long-distance pipeline on-line simulation system[J].Oil & Gas Storage and Transportation,2011,30(09):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
[4]郭晓瑛,路艳斌,郑娟.国内外长输管道 SCADA 系统标准现状[J].油气储运,2011,30(02):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
 Guo Xiaoying,Lu Yanbin,Zheng Juan.Technical status of long-distance pipeline SCADA system standards worldwide[J].Oil & Gas Storage and Transportation,2011,30(09):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
[5]杨莉,王从乐,姚玉萍,等.风城超稠油掺柴油长距离输送方法[J].油气储运,2011,30(10):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
 Yang Li,Wang Congle,Yao Yuping,et al.Long-distance transportation method for Fengcheng Ultra-heavy Oils blended with diesel[J].Oil & Gas Storage and Transportation,2011,30(09):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
[6]陈荣,陈晓勤.苏丹3/7区原油管道加剂运行安全经济评价[J].油气储运,2011,30(12):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
 Chen Rong and Chen Xiaoqin.Safety and economy evaluation of PPD-added oil pipeline in the 3/7 Block of Sudan[J].Oil & Gas Storage and Transportation,2011,30(09):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
[7]王洪超 石志国 许斌 王立坤 谭东杰 余东亮 熊敏.Hilbert-Huang 变换在管道泄漏监测系统中的应用[J].油气储运,2012,31(1):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
 Wang Hongchao,Shi Zhiguo,Xu Bin,et al.Application of Hilbert-Huang Transformation in pipeline leak detection system[J].Oil & Gas Storage and Transportation,2012,31(09):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
[8]许学瑞,帅健,肖伟生.滑坡多发区管道应变监测应变计安装方法[J].油气储运,2010,29(10):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
 Xu Xuerui,Shuai Jian,Xiao Weisheng.The Installation Method of Strain Gage Used to Monitor Pipeline Strain in Landslide-prone Areas[J].Oil & Gas Storage and Transportation,2010,29(09):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
[9]岳新民,唐智树,孙增武.管道试压的ASME标准和SNIP标准对比[J].油气储运,2010,29(12):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
 Yue Xinmin,Tang Zhishu,Sun Zengwu.Comparison of ASME Code and SNIP Standard About Pipeline Pressure Test[J].Oil & Gas Storage and Transportation,2010,29(09):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
[10]贾双英,王志刚,蒋尚达,等.长输管道工程预结算中其他费用的计算[J].油气储运,2010,29(8):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
 Jia Shuangying,Wang Zhigang,Jiang Shangda.Calculation on Other Costs in Pre-clearing of Long-distance Pipeline Project[J].Oil & Gas Storage and Transportation,2010,29(09):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
[11]陈霖.CO2 管道介质泄漏浓度分布及危险区域实验研究[J].油气储运,2017,36(预出版):1.
 CHEN Lin.Experimental study on the medium concentration distribution and hazardous area in the case of CO2 pipeline leakage[J].Oil & Gas Storage and Transportation,2017,36(09):1.

备注/Memo

基金项目:国家重点研发计划“战略性科技创新合作”专项“区域二氧化碳捕集与封存关键技术研发与示范”,2022YFE0206800;国家石油天然气管网集团有限公司科技专项课题“超临界CO2管道输送工艺与安全技术”,SSCC202107。(收稿日期:2023-06-09;修回日期:2023-07-25;网络出版日期:2023-08-02

编辑:张静楠)

作者简介:殷布泽,男,1996年生,在读博士研究生,2019年毕业于中国石油大学(华东)石油与天然气工程专业,现主要从事CO2管道泄漏减压波和止裂方向的研究工作。地址:山东省青岛市黄岛区长江西路66号, 266500。电话:17864293878,Email:yinbuze@163.com

更新日期/Last Update: 2023-08-02