网站版权@2014 《油气储运》杂志社 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
管道适合长距离、大输量的运输,是碳捕集、封存与利用技术(Carbon Capture Utilization and Storage,CCUS)连接碳源和碳汇的关键环节。但由于CO2特殊的减压特性,CO2长输管道在运行过程中发生泄漏后极易发生管材持续性裂纹扩展。为此,从试验、理论研究及数值模拟三个方面综述了国内外对CO2泄漏减压特性和裂纹扩展方面的研究现状,归纳总结不同状态方程、杂质因素、理论模型对泄漏减压特性的适应性,以及不同规模、初始条件与相态、杂质含量、泄漏方式下泄漏减压的试验成果。进而分析了不同相态、初始条件、管材、杂质含量及种类等因素对裂纹扩展的影响,并对比分析不同的CO2管道裂纹扩展理论模型及其适用范围,以及裂纹扩展与流固耦合数值模拟方法。最后对未来亟需进一步开展研究的内容进行展望,以期为国内CO2管道泄漏与裂纹扩展研究提供借鉴,从而促进并提升CCUS安全保障技术水平。
Pipelines and are a key link in carbon capture, storage, and utilization (CCUS) technology to connect carbon sources and sinks, which are suitable for long-distance and high-volume transportation. However, due to the special pressure reducing characteristics of CO2, continuous crack propagation of pipes is highly likely to occur after leakage. This article comprehensively reviews the research on the decompression characteristics of CO2 leakage at home and abroad from three aspects: experimental, theoretical research, and numerical simulation. The adaptability of different Equation of state, impurity factors and theoretical models to the characteristics of leakage and pressure reduction is summarized. The experimental results of different scales, initial condition, phase states, impurity contents and leakage modes are summarized. The effects of different phase states, initial condition, pipe materials, impurity content and types on crack growth were analyzed. The different theoretical models of crack growth in CO2 pipes and their application scope, as well as the latest crack growth and fluid–structure interaction numerical simulation methods are reviewed. The research contents that need to be further carried out in the future are prospected, including the selection and optimization of the Equation of state with impurities, especially the multi-component impurities, the crack propagation behavior between the fluid in the pipe and the pipe wall with different phase states and different components, the coupling process between the crack propagation and the soil, the modification based on the existing experimental data and BTC model or DNV model, or the establishment of new calculation criteria for ductile crack arrest.
[1] 胡其会,李玉星,张建,俞欣然,王辉,王武昌,等. “双碳”战略下中国CCUS技术现状及发展建议[J].油气储运,2022,41(4):361-371. DOI:10.6047/j.issn.1000-8241.2022.04.001.
HU Q H, LI Y X, ZHANG J, YU X R, WANG H, WANG W C, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil and Gas Storage and Transportation, 2022, 41(4): 361-371.
[2] 严刚,郑逸璇,王雪松,李冰,何捷,邵朱强,等.基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究,2022,35(2):309-319. DOI:10.13198/j.issn.1001-6929.2021.11.13.
YAN G, ZHENG Y X, WANG X S, LI B, HE J, SHAO Z Q, et al. Pathway for carbon dioxide peaking in China based on sectoral analysis[J]. Research of Environmental Sciences, 2022, 35(2): 309-319.
[3] 张卫东,张栋,田克忠.碳捕集与封存技术的现状与未来[J].中外能源,2009,14(11):7-14.
ZHANG W D, ZHANG D, TIAN K Z. Carbon capture and sequestration technology[J]. Sino-Global Energy, 2009, 14(11): 7-14.
[4] LU H F, MA X, HUANG K, FU L D, AZIMI M. Carbon dioxide transport via pipelines: a systematic review[J]. Journal of Cleaner Production, 2020, 266: 121994. DOI: 10.1016/j.jclepro.2020.121994.
[5] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 465-482.
[6] COSHAM A, JONES D G, ARMSTRONG K, ALLASON D, BARNETT J. The decompression behaviour of carbon dioxide in the dense phase[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 447-464.
[7] HAN S H, KIM J, CHANG D. An experimental investigation of liquid CO2 release through a capillary tube[J]. Energy Procedia, 2013, 37: 4724-4730. DOI: 10.1016/j.egypro.2013.06.381.
[8] XIE Q Y, TU R, JIANG X, LI K, ZHOU X J. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130: 574-580. DOI: 10.1016/j.apenergy.2014.01.088.
[9] LI K, ZHOU X J, TU R, XIE Q Y, JIANG X. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71: 665-672. DOI: 10.1016/j.energy.2014.05.005.
[10] DRESCHER M, VARHOLM K, MUNKEJORD S T, HAMMER M, HELD R, DE KOEIJER G. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457. DOI: 10.1016/j.egypro.2014.11.267.
[11] AHMAD M, LOWESMITH B, DE KOEIJER G, NILSEN S, TONDA H, SPINELLI C, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353. DOI: 10.1016/j.ijggc.2015.04.001.
[12] VREE B, AHMAD M, BUIT L, FLORISSON O. Rapid depressurization of a CO2 pipeline–an experimental study[J]. International Journal of Greenhouse Gas Control, 2015, 41: 41-49. DOI: 10.1016/j.ijggc.2015.06.011.
[13] 赵青.含杂质CO2不同相态管输节流及减压特性研究[D].青岛:中国石油大学(华东),2015.
ZHAO Q. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase[D]. Qingdao: China University of Petroleum(East China), 2015.
[14] 喻健良,郭晓璐,闫兴清,张永春,陈绍云.工业规模CO2管道泄放过程中的压力响应及相态变化[J].化工学报,2015,66(11):4327-4334. DOI:10.11949/j.issn.0438-1157.20150700.
YU J L, GUO X L, YAN X Q, ZHANG Y C, CHEN S Y. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334.
[15] BOTROS K K, GEERLIGS J, ROTHWELL B, ROBINSON T. Measurements of decompression wave speed in binary mixtures of carbon dioxide and impurities[J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021301. DOI: 10.1115/1.4034016.
[16] MARTYNOV S, ZHENG W T, MAHGEREFTEH H, BROWN S, HEBRARD J, JAMOIS D, et al. Computational and experimental study of solid-phase formation during the decompression of high-pressure CO2 pipelines[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 7054-7063. DOI: 10.1021/acs.iecr.8b00181.
[17] 顾帅威.不同相态CO2管道减压过程流动与温降特性研究[D].青岛:中国石油大学(华东),2019.
GU S W. A study on the flow characteristics and temperature drop of CO2 pipelines in different phase states[D]. Qingdao: China University of Petroleum(East China), 2019.
[18] CLAUSEN S, OOSTERKAMP A, STRØM K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. DOI: 10.1016/j.egypro.2012.06.044.
[19] 喻健良,朱海龙,郭晓璐,闫兴清,曹琦,刘少荣.超临界CO2管道减压过程中的热力学特性[J].化工学报,2017,68(9):3350-3357. DOI:10.11949/j.issn.0438-1157.20170154.
YU J L, ZHU H L, GUO X L, YAN X Q, CAO Q, LIU S R. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357.
[20] 郭晓璐. CO2管道泄漏中介质压力响应、相态变化和扩散特性研究[D].大连:大连理工大学,2017.
GUO X L. Pressure response, phase transition and dispersion characteristics during CO2 pipeline releases[D]. Dalian: Dalian University of Technology, 2017.
[21] GUO X L, YAN X Q, YU J L, ZHANG Y C, CHEN S Y, MAHGEREFTEH H, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197. DOI: 10.1016/j.apenergy.2016.06.026.
[22] GUO X L, YAN X Q, YU J L, YANG Y, ZHANG Y C, CHEN S Y, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078. DOI: 10.1016/j.energy.2016.10.133.
[23] GUO X L, YAN X Q, YU J L, ZHANG Y C, CHEN S Y, MAHGEREFTEH H, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 183: 1279-1291. DOI: 10.1016/j.apenergy.2016.09.088.
[24] GUO X L, YAN X Q, ZHENG Y G, YU J L, ZHANG Y C, CHEN S Y, et al. Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline[J]. Energy, 2017, 119: 53-66. DOI: 10.1016/j.energy.2016.12.048.
[25] CAO Q, YAN X Q, GUO X L, ZHU H L, LIU S R, YU J L. Temperature evolution and heat transfer during the release of CO2 from a large-scale pipeline[J]. International Journal of Greenhouse Gas Control, 2018, 74: 40-48. DOI: 10.1016/j.ijggc.2018.04.015.
[26] MUNKEJORD S T, AUSTEGARD A, DENG H, HAMMER M, STANG H G J, LØVSETH S W. Depressurization of CO2 in a pipe: high-resolution pressure and temperature data and comparison with model predictions[J]. Energy, 2020, 211: 118560. DOI: 10.1016/j.energy.2020.118560.
[27] HAN S H, CHANG D, KIM J, CHANG W. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier[J]. Process Safety and Environmental Protection, 2014, 92(1): 60-69. DOI: 10.1016/j.psep.2013.10.003.
[28] 刘锋.超临界压力CO2管道泄漏特征与扩散规律研究[D].北京:清华大学,2016.
LIU F. Study on the leakage and diffusion behavior of supercritical pressure CO2 from pipelines[D]. Beijing: Tsinghua University, 2016.
[29] XU B P, JIE H E, WEN J X. A pipeline depressurization model for fast decompression and slow blowdown[J]. International Journal of Pressure Vessels and Piping, 2014, 123/124: 60-69. DOI: 10.1016/j.ijpvp.2014.07.003.
[30] BROWN S, MARTYNOV S, MAHGEREFTEH H, CHEN S, ZHANG Y. Modelling the non-equilibrium two-phase flow during depressurisation of CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2014, 30: 9-18. DOI: 10.1016/j.ijggc.2014.08.013.
[31] ELSHAHOMI A, LU C, MICHAL G, LIU X, GODBOLE A, VENTON P. Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015, 140: 20-32. DOI: 10.1016/j.apenergy.2014.11.054.
[32] FLECHAS T, LABOUREUR D M, GLOVER C J. A 2-D CFD model for the decompression of carbon dioxide pipelines using the Peng-Robinson and the Span-Wagner equation of state[J]. Process Safety and Environmental Protection, 2020, 140: 299-313. DOI: 10.1016/j.psep.2020.04.033.
[33] GU S W, LI Y X, TENG L, HU Q H, ZHANG D T, YE X, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J]. Process Safety and Environmental Protection, 2018, 120: 237-247. DOI: 10.1016/j.psep.2018.08.034.
[34] 李玉星,王财林,胡其会,龚霁昱.含杂质超临界CO2管道减压波波速的预测模型[J].油气储运,2021,40(9):1027-1032. DOI:10.6047/j.issn.1000-8241.2021.09.008.
LI Y X, WANG C L, HU Q H, GONG J Y. Prediction model of decompression wave velocity in supercritical CO2 pipelines containing impurities[J]. Oil & Gas Storage and Transportation, 2021, 40(9): 1027-1032.
[35] 顾帅威,滕霖,李玉星,胡其会,张大同,王财林.含杂质气态CO2管道减压波传播特性[J].石油化工,2018,47(7):689-695. DOI:10.3969/j.issn.1000-8144.2018.07.008.
GU S W, TENG L, LI Y X, HU Q H, ZHANG D T, WANG C L. Propagation characteristics of decompression wave for gaseous CO2 in pipeline containing impurities[J]. Petrochemical Technology, 2018, 47(7): 689-695.
[36] DALL’ACQUA D, TERENZI A, LEPORINI M, D’ALESSANDRO V, GIACCHETTA G, MARCHETTI B. A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state[J]. Applied Energy, 2017, 206: 1432-1445. DOI: 10.1016/j.apenergy.2017.09.118.
[37] NICHITA D V, KHALID P, BROSETA D. Calculation of isentropic compressibility and sound velocity in two-phase fluids[J]. Fluid Phase Equilibria, 2010, 291(1): 95-102. DOI: 10.1016/j.fluid.2009.12.022.
[38] MAHGEREFTEH H, BROWN S, MARTYNOV S. A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2012, 2(5): 369-379. DOI: 10.1002/ghg.1302.
[39] MAHGEREFTEH H, ZHANG P, BROWN S. Modelling brittle fracture propagation in gas and dense-phase CO2 transportation pipelines[J]. International Journal of Greenhouse Gas Control, 2016, 46: 39-47. DOI: 10.1016/j.ijggc.2015.12.021.
[40] PICARD D J, BISHNOI P R. The importance of real-fluid behavior and nonisentropic effects in modeling decompression characteristics of pipeline fluids for application in ductile fracture propagation analysis[J]. The Canadian Journal of Chemical Engineering, 1988, 66(1): 3-12. DOI: 10.1002/cjce.5450660101.
[41] AURSAND E, AURSAND P, HAMMER M, LUND H. The influence of CO2 mixture composition and equations of state on simulations of transient pipeline decompression[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 599-609. DOI: 10.1016/j.ijggc.2016.07.004.
[42] JIE H E, XU B P, WEN J X, COOPER R, BARNETT J. Predicting the decompression characteristics of carbon dioxide using computational fluid dynamics[C]. Calgary: 2012 9th International Pipeline Conference, 2012: 585-595.
[43] 鲁寨军,严利果,肖程欢,姚术健.高压CO2管道泄漏的瞬态行为数值研究[J].安全与环境学报,2021,21(2):758-763. DOI:10.13637/j.issn.1009-6094.2020.1363.
LU Z J, YAN L G, XIAO C H, YAO S J. Numerical study on the transient behavior of high-pressure CO2 pipeline leakage[J]. Journal of Safety and Environment, 2021, 21(2): 758-763.
[44] 鲁寨军,王甲强,张梓轩,孙永龙,王根达,刘东润.基于查表插值算法的高压CO2管道泄漏瞬态特性数值模拟[J].安全与环境学报,2023,23(2):442-450. DOI:10.13637/j.issn.1009-6094.2021.1814.
LU Z J, WANG J Q, ZHANG Z X, SUN Y L, WANG G D, LIU D R. Numerical study on the transient behaviour of high-pressure CO2 pipeline leakage based on lookup table interpolation algorithm[J]. Journal of Safety and Environment, 2023, 23(2): 442-450.
[45] XIAO C H, LU Z J, YAN L G, YAO S J. Transient behaviour of liquid CO2 decompression: CFD modelling and effects of initial state parameters[J]. International Journal of Greenhouse Gas Control, 2020, 101: 103154. DOI: 10.1016/j.ijggc.2020.103154.
[46] BARNETT J, COOPER R. An operator’s perspective on fracture control in dense phase CO2 pipelines[C]. Calgary: 2016 11th International Pipeline Conference, 2016: V003T05A013.
[47] PORTER R T J, MAHGEREFTEH H, BROWN S, MARTYNOV S, COLLARD A, WOOLLEY R M, et al. Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: an overview of aims, objectives and main findings[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 662-681. DOI: 10.1016/j.ijggc.2016.08.011.
[48] WOOLLEY R M, FAIRWEATHER M, WAREING C J, FALLE S A E G, MAHGEREFTEH H, MARTYNOV S, et al. CO2PipeHaz: quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529. DOI: 10.1016/j.egypro.2014.11.274.
[49] DI BIAGIO M, LUCCI A, MECOZZI E, SPINELLI C M. Fracture propagation prevention on CO2 pipelines: full scale experimental testing and verification approach[C]. Colorado Springs: Pipeline Technology Conference 2017, 2017: 1-17.
[50] LINTON V, LEINUM B H, NEWTON R, FYRILEIV O. CO2SAFE-ARREST: a full-scale burst test research program for carbon dioxide pipelines—part 1: project overview and outcomes of test 1[C]. Calgary: 2018 12th International Pipeline Conference, 2018: V003T05A008.
[51] 国家管网.国内首次!二氧化碳管道全尺寸爆破试验成功完成[EB/OL].(2023-05-18)[2023-06-08]. http://www.jshmzc.com/hmzc/gn/content/8be0a929-51e5-4726-90b3-57dac1106cb7.html.
PipeChina. For the first time in China! Successfully completed full-scale explosion test for carbon dioxide pipeline[EB/OL]. (2023-05-18)[2023-06-08]. http://www.jshmzc.com/hmzc/gn/content/8be0a929-51e5-4726-90b3-57dac1106cb7.html.
[52] MAXEY W A. Long shear fractures in CO2 lines controlled by regulating saturation, arrest pressures[J]. Oil & Gas Journal, 1986, 84(31): 44-46.
[53] RUDLAND D, SHIM D J, XU H, RIDER D, MINCER P, SHOEMAKER D, et al. First major improvements to the two-curve ductile fracture model-part I main body: 03-G78-01[R]. Columbus: Engineering Mechanics Corporation of Columbus, 2007: 56-112.
[54] HU Q H, ZHANG N, LI Y X, WANG W C, ZHU J L, GONG J Y. A new model for calculation of arrest toughness in the fracture process of the supercritical CO2 pipeline[J]. ACS Omega, 2021, 6(26): 16804-16815. DOI: 10.1021/acsomega.1c01360.
[55] SKARSVÅG H L, HAMMER M, MUNKEJORD S T, LOG A M, DUMOULIN S, GRUBEN G. Towards an engineering tool for the prediction of running ductile fractures in CO2 pipelines[J]. Process Safety and Environmental Protection, 2023, 171: 667-679. DOI: 10.1016/j.psep.2023.01.054.
[56] GUO X L, XU S Q, CHEN G J, YAN X Q, CAO Q. Fracture criterion and control plan on CO2 pipelines: theory analysis and full-bore rupture (FBR) experimental study[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104394. DOI: 10.1016/j.jlp.2021.104394.
[57] MARTYNOV S, BROWN S, MAHGEREFTEH H, SUNDARA V, CHEN S Y, ZHANG Y C. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J]. Process Safety and Environmental Protection, 2014, 92(1): 36-46. DOI: 10.1016/j.psep.2013.10.004.
[58] AURSAND E, DUMOULIN S, HAMMER M, LANGE H I, MORIN A, MUNKEJORD S T, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid–structure model[J]. Engineering Structures, 2016, 123: 192-212. DOI: 10.1016/j.engstruct.2016.05.012.
[59] 金峤,孙泽宇,孙威.内压波动下的CO2管道轴向表面裂纹疲劳扩展研究[J].工程力学,2015,32(5):84-93. DOI:10.6052/j.issn.1000-4750.2013.11.1043.
JIN Q, SUN Z Y, SUN W. Study on fatigue crack growth in CO2 pipelines with an axial surface crack under pulsating internal pressure[J]. Engineering Mechanics, 2015, 32(5): 84-93.
[60] 任科.超临界二氧化碳管道断裂理论和控制方法研究[D].西安:西安石油大学,2018.
REN K. Study on theory and control method of supercritical carbon dioxide pipe fracture[D]. Xi’an: Xi’an Shiyou University, 2018.
[61] KEIM V, PAREDES M, NONN A, MÜNSTERMANN S. FSI-simulation of ductile fracture propagation and arrest in pipelines: comparison with existing data of full-scale burst tests[J]. International Journal of Pressure Vessels and Piping, 2020, 182: 104067. DOI: 10.1016/j.ijpvp.2020.104067.
[62] OKODI A, LIN M, YOOSEF-GHODSI N, KAINAT M, HASSANIEN S, ADEEB S. Crack propagation and burst pressure of longitudinally cracked pipelines using extended finite element method[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104115. DOI: 10.1016/j.ijpvp.2020.104115.
[63] TALEMI R H, BROWN S, MARTYNOV S, MAHGEREFTEH H. Hybrid fluid–structure interaction modelling of dynamic brittle fracture in steel pipelines transporting CO2 streams[J]. International Journal of Greenhouse Gas Control, 2016, 54(Part 2): 702-715. DOI: 10.1016/j.ijggc.2016.08.021.
[64] TALEMI R, COOREMAN S, MAHGEREFTEH H, MARTYNOV S, BROWN S. A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipeline[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 224-235. DOI: 10.1016/j.tafmec.2019.02.005.
[65] ZHEN Y, ZU Y Z, CAO Y G, NIU R Y. Effect of accurate prediction of real-time crack tip position on dynamic crack behaviors in gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104136. DOI: 10.1016/j.jngse.2021.104136.
[1]赵慧,倪洪亮,王博,等.热泵在原油长输管道的应用前景[J].油气储运,2011,30(04):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
Zhao Hui,Ni Hongliang,Wang Bo,et al.Application prospect of heat pump in long-distance crude oil pipeline[J].Oil & Gas Storage and Transportation,2011,30(09):293.[doi:10.6047/j.issn.1000-8241.2011.04.015]
[2]张伟,许康,齐世明,等.加热炉改烧煤焦油存在的问题[J].油气储运,2011,30(03):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
Zhang Wei,Xu Kang,Qi Shiming,et al.Problems of adopting coal tar in heater[J].Oil & Gas Storage and Transportation,2011,30(09):220.[doi:10.6047/j.issn.1000-8241.2011.03.016]
[3]王永红,李晓平,宫敬.长输管道在线仿真系统的应用与展望[J].油气储运,2011,30(02):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
Wang Yonghong,Li Xiaoping,Gong Jing.The application and futurity of long-distance pipeline on-line simulation system[J].Oil & Gas Storage and Transportation,2011,30(09):90.[doi:10.6047/j.issn.1000-8241.2011.02.003]
[4]郭晓瑛,路艳斌,郑娟.国内外长输管道 SCADA 系统标准现状[J].油气储运,2011,30(02):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
Guo Xiaoying,Lu Yanbin,Zheng Juan.Technical status of long-distance pipeline SCADA system standards worldwide[J].Oil & Gas Storage and Transportation,2011,30(09):156.[doi:10.6047/j.issn.1000-8241.2011.02.021]
[5]杨莉,王从乐,姚玉萍,等.风城超稠油掺柴油长距离输送方法[J].油气储运,2011,30(10):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
Yang Li,Wang Congle,Yao Yuping,et al.Long-distance transportation method for Fengcheng Ultra-heavy Oils blended with diesel[J].Oil & Gas Storage and Transportation,2011,30(09):768.[doi:10.6047/j.issn.1000-8241.2011.10.016]
[6]陈荣,陈晓勤.苏丹3/7区原油管道加剂运行安全经济评价[J].油气储运,2011,30(12):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
Chen Rong and Chen Xiaoqin.Safety and economy evaluation of PPD-added oil pipeline in the 3/7 Block of Sudan[J].Oil & Gas Storage and Transportation,2011,30(09):899.[doi:10.6047/j.issn.1000-8241.2011.12.006]
[7]王洪超 石志国 许斌 王立坤 谭东杰 余东亮 熊敏.Hilbert-Huang 变换在管道泄漏监测系统中的应用[J].油气储运,2012,31(1):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
Wang Hongchao,Shi Zhiguo,Xu Bin,et al.Application of Hilbert-Huang Transformation in pipeline leak detection system[J].Oil & Gas Storage and Transportation,2012,31(09):20.[doi:10.6047/j.issn.1000-8241.2012.01.005]
[8]许学瑞,帅健,肖伟生.滑坡多发区管道应变监测应变计安装方法[J].油气储运,2010,29(10):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
Xu Xuerui,Shuai Jian,Xiao Weisheng.The Installation Method of Strain Gage Used to Monitor Pipeline Strain in Landslide-prone Areas[J].Oil & Gas Storage and Transportation,2010,29(09):780.[doi:10.6047/j.issn.1000-8241.2010.10.017]
[9]岳新民,唐智树,孙增武.管道试压的ASME标准和SNIP标准对比[J].油气储运,2010,29(12):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
Yue Xinmin,Tang Zhishu,Sun Zengwu.Comparison of ASME Code and SNIP Standard About Pipeline Pressure Test[J].Oil & Gas Storage and Transportation,2010,29(09):925.[doi:10.6047/j.issn.1000-8241.2010.12.015]
[10]贾双英,王志刚,蒋尚达,等.长输管道工程预结算中其他费用的计算[J].油气储运,2010,29(8):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
Jia Shuangying,Wang Zhigang,Jiang Shangda.Calculation on Other Costs in Pre-clearing of Long-distance Pipeline Project[J].Oil & Gas Storage and Transportation,2010,29(09):601.[doi:10.6047/j.issn.1000-8241.2010.08.012]
[11]陈霖.CO2 管道介质泄漏浓度分布及危险区域实验研究[J].油气储运,2017,36(预出版):1.
CHEN Lin.Experimental study on the medium concentration distribution and hazardous area in the case of CO2 pipeline leakage[J].Oil & Gas Storage and Transportation,2017,36(09):1.
基金项目:国家重点研发计划“战略性科技创新合作”专项“区域二氧化碳捕集与封存关键技术研发与示范”,2022YFE0206800;国家石油天然气管网集团有限公司科技专项课题“超临界CO2管道输送工艺与安全技术”,SSCC202107。(收稿日期:2023-06-09;修回日期:2023-07-25;网络出版日期:2023-08-02
编辑:张静楠)
作者简介:殷布泽,男,1996年生,在读博士研究生,2019年毕业于中国石油大学(华东)石油与天然气工程专业,现主要从事CO2管道泄漏减压波和止裂方向的研究工作。地址:山东省青岛市黄岛区长江西路66号, 266500。电话:17864293878,Email:yinbuze@163.com