[1]吴小平 杨罗 田晓龙.基于RS-ISOA-KELM的输气管道内腐蚀速率预测方法[J].油气储运,2024,43(02):1-15.
 WU Xiaoping,YANG Luo,TIAN Xiaolong.Prediction of corrosion rate in gas pipeline based on RS-ISOA-KELM[J].Oil & Gas Storage and Transportation,2024,43(02):1-15.
点击复制

基于RS-ISOA-KELM的输气管道内腐蚀速率预测方法

相似文献/References:

[1]唐霏 彭星煜.基于RS-BP 神经网络的增压站能效评价及预测[J].油气储运,2019,38(预出版):1.
 TANG Fei,PENG Xingyu.Energy efficiency evaluation and prediction of booster stations based on RS-BP Neural Network[J].Oil & Gas Storage and Transportation,2019,38(02):1.
[2]唐霏,彭星煜.基于RS-BP神经网络的增压站能效评价及预测[J].油气储运,2019,38(03):314.[doi:10.6047/j.issn.1000-8241.2019.03.012]
 TANG Fei,PENG Xingyu.Energy efficiency evaluation and prediction of booster stations based on RS-BP Neural Network[J].Oil & Gas Storage and Transportation,2019,38(02):314.[doi:10.6047/j.issn.1000-8241.2019.03.012]
[3]吴小平,杨罗,田晓龙.基于RS-ISOA-KELM的输气管道内腐蚀速率预测方法[J].油气储运,2024,43(02):180.[doi:10.6047/j.issn.1000-8241.2024.02.007]
 WU Xiaoping,YANG Luo,TIAN Xiaolong.Prediction method for internal corrosion rate of gas pipeline based on RS-ISOA-KELM model[J].Oil & Gas Storage and Transportation,2024,43(02):180.[doi:10.6047/j.issn.1000-8241.2024.02.007]

更新日期/Last Update: 2023-11-29