[1]肖荣鸽,刘博,王勤学,等.基于GRA-ABC-BPNN模型的城市燃气日负荷预测[J].油气储运,2022,41(08):987-994.[doi:10.6047/j.issn.1000-8241.2022.08.015]
 XIAO Rongge,LIU Bo,WANG Qinxue,et al.Daily load forecasting of urban gas based on GRA-ABC-BPNN model[J].Oil & Gas Storage and Transportation,2022,41(08):987-994.[doi:10.6047/j.issn.1000-8241.2022.08.015]
点击复制

基于GRA-ABC-BPNN模型的城市燃气日负荷预测

参考文献/References:

[1] 黄庆.中国天然气产业发展现状与展望[C].澳门:国际清洁能源产业发展报告(2018),2018:268-280,516-517. HUANG Q. Development status and prospects of China’s natural gas industry[C]. Macao: International Clean Energy Industry Development Report (2018),2018: 268-280, 516-517.
[2] 涂淼. “碳中和”目标下全球天然气贸易格局演变及中国进口路径优化[J].价格月刊,2021(9):89-94. TU M. The evolution of global natural gas trade pattern and the optimization path of China’s import under the goal of carbon neutrality[J]. Prices Monthly, 2021(9): 89-94.
[3] 邵必林,严义川,曾卉玢.基于改进VMD和聚类权值共享的负荷预测[J/OL].武汉大学学报(工学版):1-13[2022-06-28]. http://kns.cnki.net/kcms/detail/42.1675.T.20220505.1656.004.html. SHAO B L, YAN Y C, ZENG H B. Gas load forecasting based on improved VMD and clustering weight sharing[J/OL]. Engineering Journal of Wuhan University: 1-13[2022-06-28]. http://kns.cnki. net/kcms/detail/42.1675.T.20220505.1656.004.html.
[4] 彭世尼,苏小红,黄强.城市燃气负荷预测方法及其分析[J].重庆建筑大学学报,2005,27(4):137-141. PENG S N, SU X H, HUANG Q. Methods of city gas load forecasting and their analysis[J]. Journal of Chongqing Jianzhu University, 2005, 27(4): 137-141.
[5] 张其敏,蒋晓蓉.城市燃气负荷灰色组合预测模型研究[J].洁净煤技术,2008,14(2):63-66. ZHANG Q M, JIANG X R. Research of gray combined forecasting model for town gas load[J]. Clean Coal Technology, 2008, 14(2): 63-66.
[6] 李持佳,焦文玲,朱建豪,江汇华.基于人工神经网络的春节期间燃气负荷预测[J].煤气与热力,2004,24(9):477-480. LI C J, JIAO W L, ZHU J H, JIANG H H. Prediction of gas load during spring festival by artificial neural network[J]. Gas &Heat, 2004, 24(9): 477-480.
[7] 苏小红.基于人工神经网络的燃气短期负荷预测研究[D].重庆:重庆大学,2005. SU X H. Research of urban gas short-term load forecasting based on ANN[D]. Chongqing: Chongqing University, 2005.
[8] 何方舟,姚安林,刘源海,宋承恩,翁祥.差分进化极限学习机城市燃气负荷预测[J].煤气与热力,2016,36(3):B8-B12. HE F Z, YAO A L, LIU Y H, SONG C E, WENG X. Forecast of urban gas load based on differential evolution extreme learning machine[J]. Gas & Heat, 2016, 36(3): B8-B12.
[9] 李军.基于遗传算法优化小波神经网络的短期天然气负荷预测[D].太原:太原科技大学,2020. LI J. Short-term natural gas load forecasting based on wavelet neural network optimized by genetic algorithm[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
[10] 刘金源,王寿喜,李婵.城市燃气日负荷PCA-GM-BPNN组合预测模型[J].天然气与石油,2018,36(5):13-19. LIU J Y, WANG S X, LI C. PCA-GM-BPNN combined forecasting model for daily load of city gas[J]. Natural Gas and Oil, 2018, 36(5): 13-19.
[11] 余凤,徐晓钟.基于优化小波BP神经网络的燃气短期负荷预测[J].计算机仿真,2015,32(1):372-376. YU F, XU X Z. Short-term gas load forecasting based on optimized wavelet BP neural network[J]. Computer Simulation, 2015, 32(1): 372-376.
[12] WU W Q, MA X, ZENG B, LV W Y, WANG Y, LI W P. A novel grey Bernoulli model for short-term natural gas consumption forecasting[J]. Applied Mathematical Modelling, 2020, 84: 393-404.
[13] LU H F, AZIMI M, ISELEY T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine[J]. Energy Reports, 2019, 5: 666-677.
[14] 张驰,郭媛,黎明.人工神经网络模型发展及应用综述[J].计算机工程与应用,2021,57(11):57-69. ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69.
[15] YANG S H, JIANG H W. An overview of artificial bee colony algorithm[C]. Zhengzhou: Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, 2015: 1220-1225.
[16] 王润.基于人工蜂群算法优化的集成分类手势识别方法的研究[D].兰州:兰州理工大学,2021. WANG R. Research on ensemble classification gesture recognition method based on artificial bee colony optimization[D]. Lanzhou:Lanzhou University of Technology, 2021.
[17] 张经博,郭凌,王朝霞,刘凌.基于遗传算法优化BP神经网络的供暖系统热负荷预测模型[J].四川兵工学报,2014,35(4):152-156. ZHANG J B, GUO L, WANG Z X, LIU L. Thermal load forecasting model of heating system based on genetic algorithm optimization BP neural network[J]. Journal of Sichuan Ordnance, 2014, 35(4): 152-156.
[18] 陈强,金小明,姚建刚,杨胜杰,龚磊,吴兆刚.基于改进ABC算法的中长期电力负荷组合预测[J].电力系统保护与控制, 2014,42(23):113-117. CHEN Q, JIN X M, YAO J G, YANG S J, GONG L, WU Z G. Improved artificial bee colony algorithm applied to medium and long-term load combination forecasting[J]. Power System Protection and Control, 2014, 42(23): 113-117.
[19] 郑建锋,王应明.基于DEA-BP神经网络的效率置信区间预测模型研究[J].计算机工程与应用,2021,57(3):273-278. ZHENG J F, WANG Y M. Research on efficiency confidence interval prediction model based on DEA-BP neural network[J]. Computer Engineering and Applications, 2021, 57(3): 273-278.
[20] 李琦,周鹏.基于改进神经网络的热网短期热负荷预测[J].控制工程,2014,21(4):506-509. LI Q, ZHOU P. Short-term heat load forecast of heat-supply network based on improved neural network[J]. Control Engineering of China, 2014, 21(4): 506-509.
[21] 何蕾,李在蓉,李京,温凯,虞维超,宫敬.基于BP神经网络与蒙特卡罗法的储气库单元可靠性评价[J].油气储运,2018,37(10):1104-1113. HE L, LI Z R, LI J, WEN K, YU W C, GONG J. Reliability assessment of underground gas storage units based on BP neural network and Monte Carlo simulation[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1104-1113.
[22] 李超,王仲奇,常正平,马健智.基于BP神经网络和多目标粒子群算法的自动钻铆工艺参数优化方法[J].航空制造技术, 2021,64(增刊2):94-102. LI C, WANG Z Q, CHANG Z P, MA J Z. Automatic drilling and riveting process parameter optimization method based on BP neural network and multi-objective particle swarm optimization algorithm[J]. Aeronautical Manufacturing Technology, 2021, 64(S2): 94-102.
[23] 李琪,屈峰涛,何璟彬,王六鹏,陈超凡.基于BAS-BP的钻井机械钻速预测模型[J].西安石油大学学报(自然科学版), 2021,36(6):89-95. LI Q, QU F T, HE J B, WANG L P, CHEN C F. Prediction model of mechanical ROP during drilling based on BAS-BP[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(6): 89-95.
[24] 吴岩,刘喆,李灿,刘洋,宋超凡,周雷.西气东输系统城市燃气用户负荷预测[J].油气储运,2021,40(4):386-390. WU Y, LIU Z, LI C, LIU Y, SONG C F, ZHOU L. Load forecasting of urban gas users in West-to-East Gas Pipeline System[J]. Oil & Gas Storage and Transportation, 2021, 40(4):386-390.
[25] 高子舒,赫晓忠,赫晓东,李伟.华北天然气省级管网低负荷率对终端成本的影响[J].油气储运,2021,40(7):721-729. GAO Z S, HE X Z, HE X D, LI W. Influence of low load rate of provincial natural gas pipeline network in North China on terminal cost[J]. Oil & Gas Storage and Transportation, 2021, 40(7): 721-729.
[26] 刘倩.重庆地区燃气负荷调查分析及其在管网水力模拟中的应用研究[D].重庆:重庆大学,2015. LIU Q. Application research on the gas load feature in Chongqing[D]. Chongqing: Chongqing University, 2015.
[27] 冯粉莉,孟涛.浅析城市燃气管网和居民用户安全管理[J].上海煤气,2017(5):13-15,31. FENG F L, MENG T. Brief analysis of city gas pipeline network and resident user safety management[J]. Shanghai Gas, 2017(5): 13-15, 31.
[28] 杜奇平,袁灿,王琳,罗凌睿.天然气用户用气结构核查的管理与实践——以中国石油西南油气田公司为例[J].天然气技术与经济,2019,13(2):58-61,83. DU Q P, YUAN C, WANG L, LUO L R. Management and practice of gas users’ gas consumption structure check:a case study on Southwest Oil & Gas Field Company, PetroChina[J]. Natural Gas Technology and Economy, 2019, 13(2): 58-61, 83.
[29] 王晨.基于PCA-WNN模型的城市燃气短期负荷预测[D].西安:西安石油大学,2019. WANG C. Short-term load forecasting of city gas based on PCA-WNN model[D]. Xi'an: Xi'an Shiyou University, 2019.
[30] 汤燕刚,房艳立,陈刘洋,黄小美,罗敏.城镇燃气日负荷预测模型比较研究[J].煤气与热力,2022,42(4):7-11. TANG Y G, FANG Y L, CHEN L Y, HUANG X M, LUO M. Comparative study on urban gas daily load forecasting models[J]. Gas & Heat, 2022, 42(4): 7-11.
[31] 贺剑强.城市天然气日负荷预测模型研究[D].太原:山西大学,2018. HE J Q. Research on daily load forecasting model of urban natural gas[D]. Taiyuan: Shanxi University, 2018.
[32] 周洲.城镇燃气日负荷组合预测模型的研究[D].哈尔滨:哈尔滨工业大学,2019. ZHOU Z. Research on daily gas load combination forecast model of towns[D]. Harbin: Harbin Institute of Technology, 2019.

相似文献/References:

[1]赵会军,张青松,张国忠,等.基于BP神经网络顺序输送混油粘度预测[J].油气储运,2007,26(12):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
 ZHAO Huijun,ZHANG Qingsong.Study on Contamination Viscosity in Batch Transportation Based on the BP Neural Network[J].Oil & Gas Storage and Transportation,2007,26(08):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
[2]付道明,孙军,贺志刚,等.预测腐蚀管道剩余强度的新方法[J].油气储运,2004,23(4):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
 FU Daoming,SUN Jun.A New method to Predict Residual Strength of Corrosion Pipelines[J].Oil & Gas Storage and Transportation,2004,23(08):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
[3]喻西崇,赵金洲,纪录军,等.利用神经网络分析注水管道内腐蚀影响因素[J].油气储运,2003,22(2):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
 YU Xichong,ZHAO Jinzhou.Corrosion Influence Factors Analysis Using Neural Network for Injecting Pipeline[J].Oil & Gas Storage and Transportation,2003,22(08):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
[4]刘刚,周志龙,王正涛,等.改进BP神经网络在管道腐蚀速率预测中的应用[J].油气储运,2006,25(4):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
 LIU Gang,ZHOU Zhilong.The Application of the Improved BP Neural Network in Prediction of Pipeline Corrosion Rate[J].Oil & Gas Storage and Transportation,2006,25(08):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
[5]高山卜,钱成文,张沛,等.基于改进的BP神经网络管输能耗预测模型[J].油气储运,2014,33(8):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
 GAO Shanbu,QIAN Chengwen,ZHANG Pei,et al.Prediction model of pipeline energy consumption based on improved BP neural network[J].Oil & Gas Storage and Transportation,2014,33(08):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
[6]郑倩 张宏 刘啸奔.基于BP-MC方法的断层区管道的可靠性分析[J].油气储运,2019,38(12):1.
 ZHENG Qian,ZHANG Hong,LIU Xiaoben.Reliability analysis of pipeline in fault area based on BP-MC method[J].Oil & Gas Storage and Transportation,2019,38(08):1.
[7]徐长航,刘鹏谦,李振兴,等.基于声发射信号的气液两相流管道泄漏识别方法[J].油气储运,2021,40(10):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
 XU Changhang,LIU Pengqian,LI Zhenxing,et al.Leakage identification method of gas-liquid two-phase flow pipeline based on acoustic emission signal[J].Oil & Gas Storage and Transportation,2021,40(08):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
[8]孙天礼,韩雪,黄仕林,等.元坝高酸性气田地面管道内腐蚀预测[J].油气储运,2023,42(01):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
 SUN Tianli,HAN Xue,HUANG Shilin,et al.Internal corrosion prediction of ground pipeline of Yuanba high-sour gasfield[J].Oil & Gas Storage and Transportation,2023,42(08):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
[9]温泉,石小平,张利分,等.基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J].油气储运,2023,42(06):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
 WEN Quan,SHI Xiaoping,ZHANG Lifen,et al.APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J].Oil & Gas Storage and Transportation,2023,42(08):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
[10]刘真 潘文菊 刘佳 温凯 宫敬.基于聚类改进的区域天然气长期需求组合预测[J].油气储运,2023,42(11):1.
 LIU Zhen,PAN Wenju,LIU Jia,et al.Improved combination forecasting model for regional natural gas long-term consumption based on clustering algorithm[J].Oil & Gas Storage and Transportation,2023,42(08):1.

备注/Memo

肖荣鸽,女,1978年生,教授,2014年博士毕业于西安理工大学水力学及河流动力学专业,现主要从事天然气处理与加工、城市燃气负荷预测研究及油气储运工程相关学科的教学工作。地址:陕西省西安市雁塔区电子二路东段18号,710065。电话:13572960817。Email:xiaorongge@163.com
基金项目:陕西省科技厅重点研发计划项目“城镇复杂用户燃气负荷预测与调峰方案优化研究”, 2021GY-139。
(收稿日期:2021-10-28;修回日期:2022-07-03;编辑:刘博)

更新日期/Last Update: 2022-08-25