网站版权 © 《油气储运》编辑部 陕ICP备11014090号-10
地址:河北省廊坊市金光道51号(065000);电话:0316-2176193 / 0316-2072055; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
城市燃气负荷预测对于合理高效地调配燃气资源、解决城市燃气用户用气问题具有重要意义。通过灰色关联分析法(Grey Relation Analysis,GRA)对所确定的11个影响燃气日负荷的因素进行分析,依据关联度大小进行筛选,逐个剔除关联度较低的影响因素,将剩余关联度较高的影响因素作为BP神经网络(Back Propagation Neural Network,BPNN)的输入;采用人工蜂群(Artificial BeeColony,ABC)算法优化BPNN权值和阈值;搭建GRA-ABC-BPNN预测模型预测城市燃气日负荷,并对其准确性和有效性进行验证。结果显示:GRA-ABC-BPNN模型预测的城市燃气日负荷的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)值为0.5528%,而遗传算法优化BPNN(Genetic Algorithm-BPNN,GA-BPNN)模型及ABC-BPNN模型的MAPE值分别为1.4913%、0.6369%,证明了GRA-ABC-BPNN预测模型是一种有效且精度可观的城市燃气日负荷预测方法,为城市燃气日负荷预测提供了新的途径。(图5,表7,参32)
Urban gas load forecasting is of great significance for rationally and efficiently deploying gas resources and solving the problem of gas consumption by urban gas users. Herein, the 11 identified influencing factors of the daily gas load were analyzed through the Gray Relation Analysis (GRA) method and screened according to the correlation degree, having the influencing factors with little correlation eliminated one by one, and using the remained influencing factors with high correlation degree as the input of the Back Propagation Neural Network (BPNN). Meanwhile, the BPNN weights and thresholds were optimized with the Artificial Bee Colony (ABC) algorithm. Besides, a GRA-ABC-BPNN forecasting model was established to predict the daily load of urban gas, and the accuracy and effectiveness of the established forecasting model was verified. As shown by the results, the Mean Absolute Percentage Error (MAPE) of the daily load of urban gas forecast by GRA-ABC-BPNN model is 0.552 8%, while the MAPEs of Genetic Algorithm-BPNN (GA-BPNN) model and ABC-BPNN model are 1.491 3% and 0.636 9%, respectively. This indicates that the GRA-ABC-BPNN forecasting model is an effective and accurate method to forecast the daily load of urban gas, and it could provide a new way for daily load forecasting of urban gas. (5 Figures, 7 Tables, 32 References)
[1] 黄庆.中国天然气产业发展现状与展望[C].澳门:国际清洁能源产业发展报告(2018),2018:268-280,516-517. HUANG Q. Development status and prospects of China’s natural gas industry[C]. Macao: International Clean Energy Industry Development Report (2018),2018: 268-280, 516-517.
[2] 涂淼. “碳中和”目标下全球天然气贸易格局演变及中国进口路径优化[J].价格月刊,2021(9):89-94. TU M. The evolution of global natural gas trade pattern and the optimization path of China’s import under the goal of carbon neutrality[J]. Prices Monthly, 2021(9): 89-94.
[3] 邵必林,严义川,曾卉玢.基于改进VMD和聚类权值共享的负荷预测[J/OL].武汉大学学报(工学版):1-13[2022-06-28]. http://kns.cnki.net/kcms/detail/42.1675.T.20220505.1656.004.html. SHAO B L, YAN Y C, ZENG H B. Gas load forecasting based on improved VMD and clustering weight sharing[J/OL]. Engineering Journal of Wuhan University: 1-13[2022-06-28]. http://kns.cnki. net/kcms/detail/42.1675.T.20220505.1656.004.html.
[4] 彭世尼,苏小红,黄强.城市燃气负荷预测方法及其分析[J].重庆建筑大学学报,2005,27(4):137-141. PENG S N, SU X H, HUANG Q. Methods of city gas load forecasting and their analysis[J]. Journal of Chongqing Jianzhu University, 2005, 27(4): 137-141.
[5] 张其敏,蒋晓蓉.城市燃气负荷灰色组合预测模型研究[J].洁净煤技术,2008,14(2):63-66. ZHANG Q M, JIANG X R. Research of gray combined forecasting model for town gas load[J]. Clean Coal Technology, 2008, 14(2): 63-66.
[6] 李持佳,焦文玲,朱建豪,江汇华.基于人工神经网络的春节期间燃气负荷预测[J].煤气与热力,2004,24(9):477-480. LI C J, JIAO W L, ZHU J H, JIANG H H. Prediction of gas load during spring festival by artificial neural network[J]. Gas &Heat, 2004, 24(9): 477-480.
[7] 苏小红.基于人工神经网络的燃气短期负荷预测研究[D].重庆:重庆大学,2005. SU X H. Research of urban gas short-term load forecasting based on ANN[D]. Chongqing: Chongqing University, 2005.
[8] 何方舟,姚安林,刘源海,宋承恩,翁祥.差分进化极限学习机城市燃气负荷预测[J].煤气与热力,2016,36(3):B8-B12. HE F Z, YAO A L, LIU Y H, SONG C E, WENG X. Forecast of urban gas load based on differential evolution extreme learning machine[J]. Gas & Heat, 2016, 36(3): B8-B12.
[9] 李军.基于遗传算法优化小波神经网络的短期天然气负荷预测[D].太原:太原科技大学,2020. LI J. Short-term natural gas load forecasting based on wavelet neural network optimized by genetic algorithm[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
[10] 刘金源,王寿喜,李婵.城市燃气日负荷PCA-GM-BPNN组合预测模型[J].天然气与石油,2018,36(5):13-19. LIU J Y, WANG S X, LI C. PCA-GM-BPNN combined forecasting model for daily load of city gas[J]. Natural Gas and Oil, 2018, 36(5): 13-19.
[11] 余凤,徐晓钟.基于优化小波BP神经网络的燃气短期负荷预测[J].计算机仿真,2015,32(1):372-376. YU F, XU X Z. Short-term gas load forecasting based on optimized wavelet BP neural network[J]. Computer Simulation, 2015, 32(1): 372-376.
[12] WU W Q, MA X, ZENG B, LV W Y, WANG Y, LI W P. A novel grey Bernoulli model for short-term natural gas consumption forecasting[J]. Applied Mathematical Modelling, 2020, 84: 393-404.
[13] LU H F, AZIMI M, ISELEY T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine[J]. Energy Reports, 2019, 5: 666-677.
[14] 张驰,郭媛,黎明.人工神经网络模型发展及应用综述[J].计算机工程与应用,2021,57(11):57-69. ZHANG C, GUO Y, LI M. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69.
[15] YANG S H, JIANG H W. An overview of artificial bee colony algorithm[C]. Zhengzhou: Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, 2015: 1220-1225.
[16] 王润.基于人工蜂群算法优化的集成分类手势识别方法的研究[D].兰州:兰州理工大学,2021. WANG R. Research on ensemble classification gesture recognition method based on artificial bee colony optimization[D]. Lanzhou:Lanzhou University of Technology, 2021.
[17] 张经博,郭凌,王朝霞,刘凌.基于遗传算法优化BP神经网络的供暖系统热负荷预测模型[J].四川兵工学报,2014,35(4):152-156. ZHANG J B, GUO L, WANG Z X, LIU L. Thermal load forecasting model of heating system based on genetic algorithm optimization BP neural network[J]. Journal of Sichuan Ordnance, 2014, 35(4): 152-156.
[18] 陈强,金小明,姚建刚,杨胜杰,龚磊,吴兆刚.基于改进ABC算法的中长期电力负荷组合预测[J].电力系统保护与控制, 2014,42(23):113-117. CHEN Q, JIN X M, YAO J G, YANG S J, GONG L, WU Z G. Improved artificial bee colony algorithm applied to medium and long-term load combination forecasting[J]. Power System Protection and Control, 2014, 42(23): 113-117.
[19] 郑建锋,王应明.基于DEA-BP神经网络的效率置信区间预测模型研究[J].计算机工程与应用,2021,57(3):273-278. ZHENG J F, WANG Y M. Research on efficiency confidence interval prediction model based on DEA-BP neural network[J]. Computer Engineering and Applications, 2021, 57(3): 273-278.
[20] 李琦,周鹏.基于改进神经网络的热网短期热负荷预测[J].控制工程,2014,21(4):506-509. LI Q, ZHOU P. Short-term heat load forecast of heat-supply network based on improved neural network[J]. Control Engineering of China, 2014, 21(4): 506-509.
[21] 何蕾,李在蓉,李京,温凯,虞维超,宫敬.基于BP神经网络与蒙特卡罗法的储气库单元可靠性评价[J].油气储运,2018,37(10):1104-1113. HE L, LI Z R, LI J, WEN K, YU W C, GONG J. Reliability assessment of underground gas storage units based on BP neural network and Monte Carlo simulation[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1104-1113.
[22] 李超,王仲奇,常正平,马健智.基于BP神经网络和多目标粒子群算法的自动钻铆工艺参数优化方法[J].航空制造技术, 2021,64(增刊2):94-102. LI C, WANG Z Q, CHANG Z P, MA J Z. Automatic drilling and riveting process parameter optimization method based on BP neural network and multi-objective particle swarm optimization algorithm[J]. Aeronautical Manufacturing Technology, 2021, 64(S2): 94-102.
[23] 李琪,屈峰涛,何璟彬,王六鹏,陈超凡.基于BAS-BP的钻井机械钻速预测模型[J].西安石油大学学报(自然科学版), 2021,36(6):89-95. LI Q, QU F T, HE J B, WANG L P, CHEN C F. Prediction model of mechanical ROP during drilling based on BAS-BP[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(6): 89-95.
[24] 吴岩,刘喆,李灿,刘洋,宋超凡,周雷.西气东输系统城市燃气用户负荷预测[J].油气储运,2021,40(4):386-390. WU Y, LIU Z, LI C, LIU Y, SONG C F, ZHOU L. Load forecasting of urban gas users in West-to-East Gas Pipeline System[J]. Oil & Gas Storage and Transportation, 2021, 40(4):386-390.
[25] 高子舒,赫晓忠,赫晓东,李伟.华北天然气省级管网低负荷率对终端成本的影响[J].油气储运,2021,40(7):721-729. GAO Z S, HE X Z, HE X D, LI W. Influence of low load rate of provincial natural gas pipeline network in North China on terminal cost[J]. Oil & Gas Storage and Transportation, 2021, 40(7): 721-729.
[26] 刘倩.重庆地区燃气负荷调查分析及其在管网水力模拟中的应用研究[D].重庆:重庆大学,2015. LIU Q. Application research on the gas load feature in Chongqing[D]. Chongqing: Chongqing University, 2015.
[27] 冯粉莉,孟涛.浅析城市燃气管网和居民用户安全管理[J].上海煤气,2017(5):13-15,31. FENG F L, MENG T. Brief analysis of city gas pipeline network and resident user safety management[J]. Shanghai Gas, 2017(5): 13-15, 31.
[28] 杜奇平,袁灿,王琳,罗凌睿.天然气用户用气结构核查的管理与实践——以中国石油西南油气田公司为例[J].天然气技术与经济,2019,13(2):58-61,83. DU Q P, YUAN C, WANG L, LUO L R. Management and practice of gas users’ gas consumption structure check:a case study on Southwest Oil & Gas Field Company, PetroChina[J]. Natural Gas Technology and Economy, 2019, 13(2): 58-61, 83.
[29] 王晨.基于PCA-WNN模型的城市燃气短期负荷预测[D].西安:西安石油大学,2019. WANG C. Short-term load forecasting of city gas based on PCA-WNN model[D]. Xi'an: Xi'an Shiyou University, 2019.
[30] 汤燕刚,房艳立,陈刘洋,黄小美,罗敏.城镇燃气日负荷预测模型比较研究[J].煤气与热力,2022,42(4):7-11. TANG Y G, FANG Y L, CHEN L Y, HUANG X M, LUO M. Comparative study on urban gas daily load forecasting models[J]. Gas & Heat, 2022, 42(4): 7-11.
[31] 贺剑强.城市天然气日负荷预测模型研究[D].太原:山西大学,2018. HE J Q. Research on daily load forecasting model of urban natural gas[D]. Taiyuan: Shanxi University, 2018.
[32] 周洲.城镇燃气日负荷组合预测模型的研究[D].哈尔滨:哈尔滨工业大学,2019. ZHOU Z. Research on daily gas load combination forecast model of towns[D]. Harbin: Harbin Institute of Technology, 2019.
[1]赵会军,张青松,张国忠,等.基于BP神经网络顺序输送混油粘度预测[J].油气储运,2007,26(12):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
ZHAO Huijun,ZHANG Qingsong.Study on Contamination Viscosity in Batch Transportation Based on the BP Neural Network[J].Oil & Gas Storage and Transportation,2007,26(08):33.[doi:10.6047/j.issn.1000-8241.2007.12.009]
[2]付道明,孙军,贺志刚,等.预测腐蚀管道剩余强度的新方法[J].油气储运,2004,23(4):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
FU Daoming,SUN Jun.A New method to Predict Residual Strength of Corrosion Pipelines[J].Oil & Gas Storage and Transportation,2004,23(08):12.[doi:10.6047/j.issn.1000-8241.2004.04.004]
[3]喻西崇,赵金洲,纪录军,等.利用神经网络分析注水管道内腐蚀影响因素[J].油气储运,2003,22(2):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
YU Xichong,ZHAO Jinzhou.Corrosion Influence Factors Analysis Using Neural Network for Injecting Pipeline[J].Oil & Gas Storage and Transportation,2003,22(08):27.[doi:10.6047/j.issn.1000-8241.2003.02.007]
[4]刘刚,周志龙,王正涛,等.改进BP神经网络在管道腐蚀速率预测中的应用[J].油气储运,2006,25(4):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
LIU Gang,ZHOU Zhilong.The Application of the Improved BP Neural Network in Prediction of Pipeline Corrosion Rate[J].Oil & Gas Storage and Transportation,2006,25(08):34.[doi:10.6047/j.issn.1000-8241.2006.04.009]
[5]高山卜,钱成文,张沛,等.基于改进的BP神经网络管输能耗预测模型[J].油气储运,2014,33(8):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
GAO Shanbu,QIAN Chengwen,ZHANG Pei,et al.Prediction model of pipeline energy consumption based on improved BP neural network[J].Oil & Gas Storage and Transportation,2014,33(08):869.[doi:10.6047/j.issn.1000-8241.2014.08.014]
[6]郑倩 张宏 刘啸奔.基于BP-MC方法的断层区管道的可靠性分析[J].油气储运,2019,38(12):1.
ZHENG Qian,ZHANG Hong,LIU Xiaoben.Reliability analysis of pipeline in fault area based on BP-MC method[J].Oil & Gas Storage and Transportation,2019,38(08):1.
[7]徐长航,刘鹏谦,李振兴,等.基于声发射信号的气液两相流管道泄漏识别方法[J].油气储运,2021,40(10):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
XU Changhang,LIU Pengqian,LI Zhenxing,et al.Leakage identification method of gas-liquid two-phase flow pipeline based on acoustic emission signal[J].Oil & Gas Storage and Transportation,2021,40(08):1131.[doi:10.6047/j.issn.1000-8241.2021.10.007]
[8]孙天礼,韩雪,黄仕林,等.元坝高酸性气田地面管道内腐蚀预测[J].油气储运,2023,42(01):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
SUN Tianli,HAN Xue,HUANG Shilin,et al.Internal corrosion prediction of ground pipeline of Yuanba high-sour gasfield[J].Oil & Gas Storage and Transportation,2023,42(08):40.[doi:10.6047/j.issn.1000-8241.2023.01.006]
[9]温泉,石小平,张利分,等.基于改进Tent映射的APSO-LSTM天然气需求量预测模型[J].油气储运,2023,42(06):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
WEN Quan,SHI Xiaoping,ZHANG Lifen,et al.APSO-LSTM model based on improved Tent mapping for natural gas demand forecasting[J].Oil & Gas Storage and Transportation,2023,42(08):702.[doi:10.6047/j.issn.1000-8241.2023.06.012]
[10]刘真 潘文菊 刘佳 温凯 宫敬.基于聚类改进的区域天然气长期需求组合预测[J].油气储运,2023,42(11):1.
LIU Zhen,PAN Wenju,LIU Jia,et al.Improved combination forecasting model for regional natural gas long-term consumption based on clustering algorithm[J].Oil & Gas Storage and Transportation,2023,42(08):1.
肖荣鸽,女,1978年生,教授,2014年博士毕业于西安理工大学水力学及河流动力学专业,现主要从事天然气处理与加工、城市燃气负荷预测研究及油气储运工程相关学科的教学工作。地址:陕西省西安市雁塔区电子二路东段18号,710065。电话:13572960817。Email:xiaorongge@163.com
基金项目:陕西省科技厅重点研发计划项目“城镇复杂用户燃气负荷预测与调峰方案优化研究”, 2021GY-139。
(收稿日期:2021-10-28;修回日期:2022-07-03;编辑:刘博)