版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
基于径向基网络的含缺陷管道安全系数修正
Modification of safety factor of defective pipeline based on radial basis function network
oil and gas pipeline
; safety factor; radial basis function network; analytic hierarchy process; integrity assessment安全系数是管道完整性评价方法的重要参数之一,传统评价方法仅考虑了管道所处地区等级对其影响,未能全面评价管道的真实安全状态。提取管道相关风险因素,比较各因素间相对重要程度并建立表征不同风险状态的分值体系,根据所得风险分值对安全系数进行修正,使得修正后的安全系数能够反映含缺陷管段实际风险状态;结合径向基网络方法的自学习特点,将各风险因素作为输入,修正后的安全系数作为输出,建立基于径向基网络的管道安全系数计算模型。由模型训练得出的修正安全系数与测试样本吻合度较好,验证了模型的准确性。结果表明:修正安全系数在考虑地区等级的基础上同时引入了其他重要风险因素的影响,为管道完整性评价中的安全系数取值提供了新的思路。(图3,表9,参21)
Safety factor is one of the important parameters for pipeline integrity assessment, but only the impact of the safety level of the place where the pipeline is located is considered in the traditional assessment method, so the actual safety status of pipeline cannot be assessed comprehensively. Here, the relevant risk factors of pipeline were extracted, the relative importance of factors was compared, a scoring system was established to feature the different risk states, and thereby, the safety factor was modified according to the risk score obtained, so that the modified safety factor could reflect the actual risk state of the defective pipeline section. Combined with the self-learning characteristics of the radial basis function network method, a calculation model of pipeline safety factor based on radical basis function network was established with risk factors as the input and the modified safety factor as the output. The calculated safety factor from the model training is in good agreement with the test sample value, which verifies the accuracy of this model. The results show that the modified safety factor introduces the influence of other important risk factors on the basis of the regional level, which provides a new idea for determining the value of safety factor in the pipeline integrity assessment. (3 Figures, 9 Tables, 21 References)
[1] EL-AKRUTI K, ZHANG T, DWIGHT R. Maintaining pipeline integrity through holistic asset management[J]. European Journal of Industrial Engineering, 2016, 10(5): 618-638.
[2] XIE M J, TIAN Z G. A review on pipeline integrity management utilizing in-line inspection data[J]. Engineering Failure Analysis, 2018, 92: 222-239.
[3] 于洋,刘德俊,孙东旭.基于漏磁内检测与分级理念的管道完整性评价[J].中国安全科学学报,2017,27(1):169-174. YU Y, LIU D J, SUN D X. Pipeline integrity assessment based on combining magnetic flux leakage detection with grading evaluation[J]. China Safety Science Journal, 2017, 27(1): 169-174.
[4] 董绍华.中国油气管道完整性管理20年回顾与发展建议[J].油气储运,2020,39(3):241-261. DONG S H. Review of China’s oil and gas pipeline integrity management in the past 20 years and development suggestions[J]. Oil & Gas Storage and Transportation, 2020, 39(3): 241-261.
[5] 陈朋超,冯文兴,燕冰川.油气管道全生命周期完整性管理体系的构建[J].油气储运,2020,39(1):40-47. CHEN P C, FENG W X, YAN B C. Construction of full life cycle integrity management system for oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 40-47.
[6] 顾晓婷,王秋妍,孙萍萍,王立航.油气管道剩余强度评价方法适用性研究[J].中国安全生产科学技术,2016,12(12):105-109. GU X T, WANG Q Y, SUN P P, WANG L H. Research on applicability of evaluation method for residual strength of oil and gas pipeline[J]. Journal of Safety Science and Technology, 2016, 12(12): 105-109.
[7] 崔铭伟,王媛媛,贺杰,由洋,封子艳,张月明,等.相互作用腐蚀管道剩余强度评价方法对比研究[J].表面技术,2016,45(8):56-62. CUI M W, WANG Y Y, HE J, YOU Y, FENG Z Y, ZHANG Y M, et al. Comparison study on assessment methods for residual strength of interaction corroded pipeline[J]. Surface Technology, 2016, 45(8): 56-62.
[8] 臧雪瑞,顾晓婷,王秋妍,王立航.含腐蚀缺陷高钢级输气管道的失效压力模型[J].油气储运,2019,38(3):285-290,296. ZANG X R, GU X T, WANG Q Y, WANG L H. A failure pressure model for high-grade gas pipelines with corrosion defects[J]. Oil & Gas Storage and Transportation, 2019, 38(3):285-290, 296.
[9] 青松铸,范小霞,阳梓杰,米小双,孙明楠,高健,等. ASME B31G-2012标准在含体积型缺陷管道剩余强度评价中的应用研究[J].天然气工业,2016,36(5):115-121. QING S Z, FAN X X, YANG Z J, MI X S, SUN M N, GAO J, et al. Application of ASME B31G-2012 to the residual strength evaluation of pipelines with volumetric defects[J]. Natural Gas Industry, 2016, 36(5): 115-121.
[10] 王维斌.长输油气管道大数据管理架构及应用[J].油气储运, 2015,34(3):229-232. WANG W B. Big data management framework and its application in long-distance oil/gas pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(3): 229-232.
[11] 张河苇,金剑,董绍华,李宁,张来斌.一种基于管道大数据的腐蚀因素相关性分析方法[J].科学通报,2018,63(8):777-783. ZHANG H W, JIN J, DONG S H, LI N, ZHANG L B. A corrosion correlation analysis method based on pipeline big data[J]. Chinese Science Bulletin, 2018, 63(8): 777-783.
[12] 董绍华,张河苇.基于大数据的全生命周期智能管网解决方案[J].油气储运,2017,36(1):28-36. DONG S H, ZHANG H W. Solution of full-life-cycle intelligent pipeline network based on big data[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 28-36.
[13] 陈一诺,董绍华.基于随机森林算法的管道缺陷预测方法[J].油气储运,2018,37(9):975-979. CHEN Y N, DONG S H. Pipeline defect prediction method based on Random Forests algorithm[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 975-979.
[14] 韩小明,苗绘,王哲.基于大数据和神经网络的管道完整性预测方法[J].油气储运,2015,34(10):1042-1046. HAN X M, MIAO H, WANG Z. Pipeline integrity prediction method based on big data and neutral network[J]. Oil & Gas Storage and Transportation, 2015, 34(10): 1042-1046.
[15] ZHANG H W, DONG S H, ZHANG L B. The correlation analysis of the Big Data for pipeline defect[C]. Waikoloa:ASME 2017 Pressure Vessels and Piping Conference, 2017:V002T02A015.
[16] 姚安林,周立国,汪龙,王棠昱,李又绿.天然气长输管道地区等级升级管理与风险评价[J].天然气工业,2017,37(1):124-130. YAO A L, ZHOU L G, WANG L, WANG T Y, LI Y L. Management of and risk evaluation on long-distance gas pipelines related to regional level upgrading[J]. Natural Gas Industry, 2017, 37(1): 124-130.
[17] SHAN K, SHUAI J, XU K, ZHENG W. Failure probability assessment of gas transmission pipelines based on historical failure-related data and modification factors[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 356-366.
[18] 孟晓丽,王德国,郭岩宝,孟涛,刘柯.基于模糊Petri网的燃气PE管道风险评价[J].安全与环境工程,2016,23(4):126-131,137. MENG X L, WANG D G, GUO Y B, MENG T, LIU K. Risk assessment of gas polyethylene pipelines based on fuzzy Petri nets[J]. Safety and Environmental Engineering, 2016, 23(4):126-131, 137.
[19] 巴振宁,韩亚鑫,梁建文.基于改进AHP和模糊综合评价法的燃气管道腐蚀风险评价[J].安全与环境学报,2018,18(6):2103-2109. BA Z N, HAN Y X, LIANG J W. Risk assessment of the gas pipeline corrosion based on the improved AHP and fuzzy comprehensive evaluation method[J]. Journal of Safety and Environment, 2018, 18(6): 2103-2109.
[20] CHEN Y, MA H W, DONG M. Automatic classification of welding defects from ultrasonic signals using an SVM-based RBF neural network approach[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2018, 60(4): 194-199.
[21] 王欣,靳鸿,杨冀豫.基于共轭梯度下降法的RBF神经网络预测算法[J].探测与控制学报,2019,41(5):106-110. WANG X, JIN H, YANG J Y. RBF network prediction algorithm based on conjugate gradient descent method[J]. Journal of Detection & Control, 2019, 41(5): 106-110.
[1]付亚荣.长输管道壁厚安全系数模糊综合评判[J].油气储运,2000,19(4):30.[doi:10.6047/j.issn.1000-8241.2000.04.008]
Fu Yarong.A Fuzzy Synthetical Evaluation on Safety Coefficient of Thickness for Long-distance Pipeline[J].Oil & Gas Storage and Transportation,2000,19(02):30.[doi:10.6047/j.issn.1000-8241.2000.04.008]
[2]刘崇德,黄昌华.环锁型盲板的破损安全设计及其断裂控制管理曲线[J].油气储运,1988,7(3):24.[doi:10.6047/j.issn.1000-8241.1988.03.005]
Liu Chougde.Safety Design of Ring-Lock Blind for Damage and the Relevent Rapture Conteol Curve[J].Oil & Gas Storage and Transportation,1988,7(02):24.[doi:10.6047/j.issn.1000-8241.1988.03.005]
[3]张宝强 焦如义 江勇 张倩.国内外长输油气管道顶管工程标准对比分析[J].油气储运,2016,35(预出版):1.
ZHANG Baoqiang,JIAO Ruyi,JIANG Yong,et al.Comparative analysis on the jacking engineering standards for long-distance oil and gas pipelines in China and abroad[J].Oil & Gas Storage and Transportation,2016,35(02):1.
[4]朱春靖 潘红丽.海外油气管道社会风险评估方法[J].油气储运,2016,35(预出版):1.
ZHU Chunjing,PAN Hongli.Assessment method of security risk of overseas oil and gas pipeline[J].Oil & Gas Storage and Transportation,2016,35(02):1.
[5]陈晓晖 王荣玖 许峻岭 李锋涛 樊明峰.管道悬索跨越大型主塔液压自爬模技术的工艺创新[J].油气储运,2016,35(预出版):1.
CHEN Xiaohui,WANG Rongjiu,XU Junling,et al.Improvement and innovation of hydraulic self-climbing formwork technology for large main tower of pipeline suspension crossingg[J].Oil & Gas Storage and Transportation,2016,35(02):1.
[6]谭东杰,李柏松,杨晓峥,等.中国石油油气管道设备国产化现状和展望[J].油气储运,2015,34(9):913.[doi:10.6047/j.issn.1000-8241.2015.09.001]
TAN Dongjie,LI Baisong,YANG Xiaozheng,et al.Development and prospect of PetroChinas pipeline equipment localization[J].Oil & Gas Storage and Transportation,2015,34(02):913.[doi:10.6047/j.issn.1000-8241.2015.09.001]
[7]张宝强,焦如义,江勇,等.国内外长输油气管道顶管工程标准对比分析[J].油气储运,2015,34(12):1345.[doi:10.6047/j.issn.1000-8241.2015.12.019]
ZHANG Baoqiang,JIAO Ruyi,JIANG Yong,et al.Comparative analysis on the jacking engineering standards for long-distance oil and gas pipelines in China and abroad[J].Oil & Gas Storage and Transportation,2015,34(02):1345.[doi:10.6047/j.issn.1000-8241.2015.12.019]
[8]祝悫智,段沛夏,王红菊,等.全球油气管道建设现状及发展趋势[J].油气储运,2015,34(12):1262.[doi:10.6047/j.issn.1000-8241.2015.12.002]
ZHU Quezhi,DUAN Peixia,WANG Hongju,et al.Current situations and future development of oil and gas pipelines in the world[J].Oil & Gas Storage and Transportation,2015,34(02):1262.[doi:10.6047/j.issn.1000-8241.2015.12.002]
[9]经建芳,李康春,邓富康,等.油气管道腐蚀的灰色线性回归组合预测模型[J].油气储运,2015,34(12):1300.[doi:10.6047/j.issn.1000-8241.2015.12.010]
JING Jianfang,LI Kangchun,DENG Fukang,et al.Prediction model of oil and gas pipeline corrosion based on grey-linear regression combination[J].Oil & Gas Storage and Transportation,2015,34(02):1300.[doi:10.6047/j.issn.1000-8241.2015.12.010]
[10]邓涛,肖斌涛,于达,等.油气管道试压水排放试验系统[J].油气储运,2015,34(12):1305.[doi:10.6047/j.issn.1000-8241.2015.12.011]
DENG Tao,XIAO Bintao,YU Da,et al.Test system for water draining after hydrotest of oil/gas pipelines[J].Oil & Gas Storage and Transportation,2015,34(02):1305.[doi:10.6047/j.issn.1000-8241.2015.12.011]
凌嘉瞳,女,1996年生,在读硕士生,2018年毕业于中国石油大学(北京)安全工程专业,现主要从事管道完整性管理方面的研究工作。地址:北京市昌平区府学路18号,102249。电话:18810556520。Email:ling_jt@163.com
基金项目:中国石油科技创新基金资助项目“基于位置大数据的管道第三方破坏智能化防范技术研究”,2018D-5007-0601;中国石油天然气股份有限公司-中国石油大学(北京)战略合作科技专项“‘一带一路’海外长输管道完整性关键技术研究与应用”,ZLZX2020-05。
(收稿日期:2018-08-28;修回日期:2020-12-22;编辑:张腾)