[1]徐磊,侯磊,李雨,等.机器学习在油气管道的应用研究进展及展望[J].油气储运,2021,40(02):138-145.[doi:10.6047/j.issn.1000-8241.2021.02.003]
 XU Lei,HOU Lei,LI Yu,et al.Research progress and prospect of application of machine learning in oil and gas pipeline[J].Oil & Gas Storage and Transportation,2021,40(02):138-145.[doi:10.6047/j.issn.1000-8241.2021.02.003]
点击复制

机器学习在油气管道的应用研究进展及展望

参考文献/References:

[1] 中华人民共和国国务院.新一代人工智能发展规划[EB/OL].(2017-07-20)[2018-06-20]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. State Council of the People’s Republic of China. Development plan of the new generation artificial intelligence[EB/OL]. (2017-07-20) [2018-06-20]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2] 薛禹胜,赖业宁.大能源思维与大数据思维的融合 (一)大数据与电力大数据[J].电力系统自动化,2016,40(1):1-8. XUE Y S, LAI Y N. Integration of macro energy thinking and Big Data thinking (Ⅰ) Big Data and power Big Data[J]. Automation of Electric Power Systems, 2016, 40(1): 1-8.
[3] 李根生,宋先知,田守嶒.智能钻井技术研究现状及发展趋势[J].石油钻探技术,2020,48(1):1-8. LI G S, SONG X Z, TIAN S C. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1-8.
[4] 林伯韬,郭建成.人工智能在石油工业中的应用现状探讨[J].石油科学通报,2019,4(4):403-413. LIN B T, GUO J C. Discussion on current application of artificial intelligence in petroleum industry[J]. Petroleum Science Bulletin, 2019, 4(4): 403-413.
[5] 杨平,詹仕凡,李明,李磊,郭锐,尚民强,等.基于梦想云的人工智能地震解释模式研究与实践[J].中国石油勘探,2020,25(5):89-96. YANG P, ZHAN S F, LI M, LI L, GUO R, SHANG M Q, et al. Research and practice on artificial intelligence seismic interpretation mode based on E & P Dream Cloud[J]. China Petroleum Exploration, 2020, 25(5): 89-96.
[6] 国家发展改革委,国家能源局.中长期油气管网规划[EB/OL].(2017-05-19)[2018-06-20]. http://www.gov.cn/xinwen/2017-07/12/content_5209925.htm. National Development and Reform Commission, National Energy Administration. Medium and long-term planning of oil and gas pipeline network[EB/OL]. (2017-05-19)[2018-06-20]. http://www.gov.cn/xinwen/2017-07/12/content_5209925.htm.
[7] 吴长春,左丽丽.关于中国智慧管道发展的认识与思考[J].油气储运,2020,39(4):361-370. WU C C, ZUO L L. Understanding and thinking on the development of China’s intelligent pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(4): 361-370.
[8] 王振声,陈朋超,王巨洪.中俄东线天然气管道智能化关键技术创新与思考[J].油气储运,2020,39(7):730-739. WANG Z S, CHEN P C, WANG J H. Key technological innovations and thinking of pipeline intelligence in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(7): 730-739.
[9] 姜昌亮.中俄东线天然气管道工程管理与技术创新[J].油气储运,2020,39(2):121-129. JIANG C L. Management and technological innovation in China-Russia Eastern Gas Pipeline Project[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 121-129.
[10] 宫敬,徐波,张微波.中俄东线智能化工艺运行基础与实现的思考[J].油气储运,2020,39(2):130-139. GONG J, XU B, ZHANG W B. Thinking on the basis and realization of intelligent process operation of China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 130-139.
[11] 李阳,廉培庆,薛兆杰,戴城.大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报(自然科学版), 2020,44(4):1-11. LI Y, LIAN P Q, XUE Z J, DAI C. Application status and prospect of Big Data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 1-11.
[12] 高鹏,高振宇,刘广仁. 2019年中国油气管道建设新进展[J].国际石油经济,2020,28(3):52-58. GAO P, GAO Z Y, LIU G R. New progress in China’s oil and gas pipeline construction in 2019[J]. International Petroleum Economics, 2020, 28(3): 52-58.
[13] 周志华.机器学习[M].北京:清华大学出版社,2016:10-13. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 10-13.
[14] 王金甲,陈浩,刘青玉.大数据下的深度学习研究[J].高技术通讯,2017,27(1):27-37. WANG J J, CHEN H, LIU Q Y. The study of deep learning under Big Data[J]. Chinese High Technology Letters, 2017, 27(1): 27-37.
[15] 周念成,廖建权,王强钢,李春艳,李剑.深度学习在智能电网中的应用现状分析与展望[J].电力系统自动化,2019,43(4):180-191. ZHOU N C, LIAO J Q, WANG Q G, LI C Y, LI J. Analysis and prospect of deep learning application in smart grid[J]. Automation of Electric Power Systems, 2019, 43(4): 180-191.
[16] KOBER J, BAGNELL J A, PETERS J. Reinforcement learning in robotics:a survey[J]. International Journal of Robotics Research, 2013, 32(11): 1238-1274.
[17] NAHUM-SHANI I, QIAN M, ALMIRALL D, PELHAM W, GNAGY B, FABIANO G A, et al. Q-learning: a data analysis method for constructing adaptive interventions[J]. Psychological Methods, 2012, 17(4): 478-494.
[18] VELUSAMY B, ANOUNCIA S M, ABRAHAM G. SaGe framework-mapping of SARSA to adaptive e-learning using learning styles[J]. International Technology Journal, 2013, 12(12): 2306-2314.
[19] 孟创纪.基于特征映射的深度迁移学习研究[D].兰州:兰州大学,2019:1-8. MENG C J. Research on deep transfer learning based on feature mapping[D]. Lanzhou: Lanzhou University, 2019: 1-8.
[20] FENG J, LI F M, LU S X, LIU J H, MA D Z. Injurious or noninjurious defect identification from MFL images in pipeline inspection using convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7):1883-1892.
[21] 岳明星,杨理践,石萌.基于卷积神经网络的管道漏磁内检测焊缝识别方法[J].电子世界,2018(12):49-50. YUE M X, YANG L J, SHI M. A method based on convolutional neural network for weld seam identification in pipeline magnetic flux leakage[J]. Electronics World, 2018(12):49-50.
[22] 樊旭然.基于卷积神经网络的压缩机缺陷检测方法的研究[D].广州:广州大学,2019:25-43. FAN X R. Research on compressor defect detection method based on convolutional neural network[D]. Guangzhou:Guangzhou University, 2019: 25-43.
[23] HU X G, ZHANG H G, MA D Z, WANG R. Status detection from spatial-temporal data in pipeline network using data transformation convolutional neural network[J]. Neurocomputing, 2019, 358(17): 401-413.
[24] 宁方立,韩鹏程,段爽,李航,韦娟.基于改进CNN的阀门泄漏超声信号识别方法[J].北京邮电大学学报,2020,43(3):38-44. NING F L, HAN P C, DUAN S, LI H, WEI J. Identification method of valve leakage ultrasonic signal based on improved CNN[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 38-44.
[25] 曹广华,宛立达,袁子龙,金树波.基于递归神经网络的游梁式抽油机振动故障诊断[J].长江大学学报(自然科学版),2010, 7(1):57-59. CAO G H, WAN L D, YUAN Z L, JIN S B. Vibration fault diagnosis of beam pumping unit based on recurrent neural network[J]. Journal of Yangtze University (Natural Science Edition), 2010, 7(1): 57-59.
[26] 李少鹏.结合CNN和LSTM的滚动轴承剩余使用寿命预测方法研究[D].哈尔滨:哈尔滨理工大学,2019:17-29. LI S P. Research on remaining useful Life prediction method of a rolling bearing combination CNN and LSTM[D]. Harbin:Harbin University of Science and Technology, 2019: 17-29.
[27] SU H, ZIO E, ZHANG J J, CHI L X, LI X Y, ZHANG Z J. A systematic data-driven demand side management method for smart natural gas supply systems[J]. Energy Conversion and Management, 2019, 185: 368-383.
[28] XU P, DU R, ZHANG Z B. Predicting pipeline leakage in petrochemical system through GAN and LSTM[J]. Knowledge-Based Systems, 2019, 175: 50-61.
[29] ZHOU D J, HUANG D W, HAO J R, REN Y L, JIANG P, JIA X Y. Vibration-based fault diagnosis of the natural gas compressor using adaptive stochastic resonance realized by generative adversarial networks[J]. Engineering Failure Analysis, 2020, 116: 104759.
[30] 郭越,王晓峰,张恒振.基于人类感知的SAR图像海上溢油检测算法[J].武汉大学学报(信息科学版),2016,41(3):395-401,407. GUO Y, WANG X F, ZHANG H Z. Oil spill detection by SAR images based on human perception[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):395-401, 407.
[31] 郎宪明.基于特征提取与信息融合的管道泄漏检测与定位研究[D].西安:西北工业大学,2018:51-69. LANG X M. Pipeline leak detection and localization based on feature extraction and information fusion[D]. Xi'an:Northwestern Polytechnical University, 2018: 51-69.
[32] 李颖.往复压缩机滑动轴承间隙复合故障诊断方法研究[D].大庆:东北石油大学,2019:33-56. LI Y. Research on fault diagnosis for sliding bearing clearance of reciprocating compressor with compound faults[D]. Daqing:Northeast Petroleum University, 2019: 33-56.
[33] 李晴晴,侯瑞春,丁香乾.基于改进堆叠自编码器的滚动轴承故障诊断[J].计算机工程与设计,2019,40(7):2064-2070. LI Q Q, HOU R C, DING X Q. Roller bearing fault diagnosis based on improved stacked auto-encoder[J]. Computer Engineering and Design, 2019, 40(7): 2064-2070.
[34] 王新颖,宋兴帅,杨泰旺.深度学习神经网络在管道故障诊断中的应用研究[J].安全与环境工程,2018,25(1):137-142,148. WANG X Y, SONG X S, YANG T W. Application of depth learning neural network in pipeline fault diagnosis[J]. Safety and Environmental Engineering, 2018, 25(1): 137-142, 148.
[35] 李器宇,张拯宁,柳建斌,郭峰,李明.无人机遥感在油气管道巡检中的应用[J].红外,2014,35(3):37-42. LI Q Y, ZHANG Z N, LIU J B, GUO F, LI M. Application of UAV remote sensing in oil and gas pipeline inspection[J]. Infrared, 2014, 35(3): 37-42.
[36] 李朝阳.高分辨率遥感图像油库检测及提取[D].上海:上海交通大学,2017:9-17. LI Z Y. The oil depot detection and extraction from high resolution remote sensing images[D]. Shanghai: Shanghai Jiao Tong University, 2017: 9-17.
[37] LIN Z, LIU X L, LAO L Y, LIU H X. Prediction of two-phase flow patterns in upward inclined pipes via deep learning[J]. Energy, 2020, 210: 118541.
[38] 郑秋梅,商振浩,王风华,林超.基于深度神经网络和支持向量机的海底管线水合物生成预测模型[J].中国石油大学学报(自然科学版),2020,44(5):46-51. ZHENG Q M, SHANG Z H, WANG F H, LIN C. Prediction model of submarine pipeline hydrate formation based on deep neural network and support vector machines[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 46-51.
[39] 王忠巍.自主海底管道机器人智能控制关键技术研究[D].上海:上海交通大学,2010:69-90. WANG Z W. Research on key technology of intelligent control for autonomous subsea in-pipe robot[D]. Shanghai: Shanghai Jiao Tong University, 2010: 69-90.
[40] WU Q, ZHU D, LIU Y, DU A, CHEN D, YE Z H. Comprehensive control system for gathering pipe network operation based on reinforcement learning[C]. Taipei: 2018 VII International Conference on Network, Communication and Computing, 2018: 34-39.
[41] HOURFAR F, BIDGOLY H J, MOSHIRI B, SALAHSHOOR K, ELKAMEL A. A reinforcement learning approach for waterflooding optimization in petroleum reservoirs[J]. Engineering Applications of Artificial Intelligence, 2019, 77: 98-116.
[42] 黄祖浩.基于深度强化学习的车用液化天然气自动加注系统研究[D].广州:广东工业大学,2019:21-40. HUANG Z H. Research on automated filling system of vehicle liquefied natural gas based on deep reinforcement learning[D]. Guangzhou: Guangdong University of Technology, 2019: 21-40.
[43] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.

相似文献/References:

[1]张海峰,蔡永军,李柏松,等.智慧管道站场设备状态监测关键技术[J].油气储运,2018,37(8):841.[doi:10.6047/j.issn.1000-8241.2018.08.001]
 ZHANG Haifeng,CAI Yongjun,LI Baisong,et al.Key technologies of equipment condition monitoring at the station of intelligent pipeline[J].Oil & Gas Storage and Transportation,2018,37(02):841.[doi:10.6047/j.issn.1000-8241.2018.08.001]
[2]蔡永军 蒋红艳 王继方 王潇潇 李莉 陈国群 张海峰.智能化管道建设关键技术研究进展[J].油气储运,2018,37(预出版):1.
 CAI Yongjun,JIANG Hongyan,WANG Jifang,et al.Research progress on key construction technologies of intelligent pipelines[J].Oil & Gas Storage and Transportation,2018,37(02):1.
[3]蔡永军,蒋红艳,王继方,等.智慧管道总体架构设计及关键技术[J].油气储运,2019,38(02):121.[doi:10.6047/j.issn.1000-8241.2019.02.001]
 CAI Yongjun,JIANG Hongyan,WANG Jifang,et al.The overall architecture design and key construction technologies of intelligent pipelines[J].Oil & Gas Storage and Transportation,2019,38(02):121.[doi:10.6047/j.issn.1000-8241.2019.02.001]
[4]唐善华,杨毅,张麟,等.天然气管网智能调控初探[J].油气储运,2021,40(09):991.[doi:10.6047/j.issn.1000-8241.2021.09.004]
 TANG Shanhua,YANG Yi,ZHANG Lin,et al.Preliminary study on intelligent control of natural gas pipeline networks[J].Oil & Gas Storage and Transportation,2021,40(02):991.[doi:10.6047/j.issn.1000-8241.2021.09.004]
[5]张鑫儒,侯磊,徐磊,等.仿真与DBSCAN算法融合的管输数据生成与验证方法[J].油气储运,2022,41(02):146.[doi:10.6047/j.issn.1000-8241.2022.02.003]
 ZHANG Xinru,HOU Lei,XU Lei,et al.Generation and verification method of pipeline transportation data based on integration of simulation and DBSCAN algorithm[J].Oil & Gas Storage and Transportation,2022,41(02):146.[doi:10.6047/j.issn.1000-8241.2022.02.003]

备注/Memo

徐磊,男,1990年生,在读博士生,2017年硕士毕业于长江大学油气储运工程专业,现主要从事大数据和机器学习在油气管道系统的应用研究工作。地址:北京市昌平区府学路18号, 102249。电话:18810062565。Email:18810062565@163.com通信作者:侯磊,男,1966年生,教授,博士生导师,2006年博士毕业于中国石油大学(北京)油气储运工程专业,现主要从事油气管道输送与油气田集输相关技术的研究工作。地址:北京市昌平区府学路18号,102249。电话:13810368969。Email:houleicup@126.com
(收稿日期:2020-11-19;修回日期:2020-12-28;编辑:刘朝阳)

更新日期/Last Update: 2021-03-03