[1]王茀玺 李晓平 陈新果 王玮 宫敬.压缩机实际能头特性的深度学习网络预测方法[J].油气储运,2020,39(04):459-466.[doi:10.6047/j.issn.1000-8241.2020.04.015]
 WANG Fuxi,LI Xiaoping,CHEN Xinguo,et al.Prediction method for compressor real energy head characteristics based on deep learning network[J].Oil & Gas Storage and Transportation,2020,39(04):459-466.[doi:10.6047/j.issn.1000-8241.2020.04.015]
点击复制

压缩机实际能头特性的深度学习网络预测方法

参考文献/References:

[1] 中华人民共和国国家能源局. 天然气发展“十三· 五”规划[R]. 北京:中华人民共和国国家能源局,2016:23-25. National Energy Administration. The 13th Five-Year Plan (2016- 2020) of natural gas development[R]. Beijing:National Energy Administration,2016:23-25.
[2] 刘建臣. 天然气管道压气站的技术现状及发展[J]. 油气储运, 2008,27(8):49-53. LIU J C. Status and analysis of compressor stations over natural gas pipelines[J]. Oil & Gas Storage and Transportation,2008, 27(8):49-53.
[3] 徐秀芬,李泓霏,刘国豪. 天然气加气站压缩机组效率的计算方 法[J]. 天然气工业,2019,39(11):105-111. XU X F,LI H F,LIU G H. A calculation method of compressor set efficiency at a natural gas filling station[J]. Natural Gas Industry,2019,39(11):105-111.
[4] 姬忠礼,邓志安,赵会军. 泵和压缩机[M]. 北京:石油工业出版 社,2008:67-72. JI Z L,DENG Z A,ZHAO H J. Pumps and compressors[M]. Beijing:Petroleum Industry Press,2008:67-72.
[5] 林扬,梁伟,王浩,汪春付,乔国春. 离心压缩机特性曲线研 究[J]. 石油化工自动化,2017,53(1):27-29,68. LIN Y,LIANG W,WANG H,WANG C F,QIAO G C. Research on performance curve of centrifugal compressor[J]. Automation in Petro-Chemical Industry,2017,53(1):27-29,68.
[6] 曹志柱,刘安,宇波,魏进家,孙东亮. 天然气管道典型离心压缩机 性能预测研究[J]. 北京石油化工学院学报,2018,26(3):14-20. CAO Z Z,LIU A,YU B,WEI J J,SUN D L. Study on performance prediction of centrifugal natural gas compressors[J]. Journal of Beijing Institute of Petrochemical Technology,2018, 26(3):14-20. [7] JIANG W,KHAN J,DOUGAL R A. Dynamic centrifugal compressor model for system simulation[J]. Journal of Power Sources,2006,158(2):1333-1343.
[8] 褚菲,王福利,王小刚. 大型离心压缩机性能预测的混合建模方 法研究[J]. 仪器仪表学报,2011,32(12):2821-2826. CHU F,WANG F L,WANG X G. Hybrid modeling method for performance prediction of multi-stage centrifugal compressor[J]. Chinese Journal of Scientific Instrument,2011, 32(12):2821-2826.
[9] 崔志明. 试论神经网络与专家系统的结合[J]. 微电子学与计算 机,1997(6):33-35. CUI Z M. On interfusion between neural network and expert system[J]. Microelectronics & Computer,1997(6):33-35.
[10] 林伯韬,郭建成. 人工智能在石油工业中的应用现状探讨[J]. 石油科学通报,2019,4(4):403-413. LIN B T,GUO J C. Discussion on current application of artificial intelligence in petroleum industry[J]. Petroleum Science Bulletin,2019,4(4):403-413.
[11] 陶阳明. 经典人工智能算法综述[J/OL]. 软件导刊: 1-6[2020-02-09]. http://kns.cnki.net/kcms/detail/42.1671. TP.20191122.1626.072.html. TAO Y M. Overview of classical artificial intelligence algorithms[J/OL]. Software Guide:1-6[2020-02-09]. http:// kns.cnki.net/kcms/detail/42.1671.TP.20191122.1626.072.html.
[12] 阎平凡. 人工神经网络与模拟进化计算[M]. 北京:清华大学 出版社,2005:5-8. YAN P F. Artificial neural networks and evolutionary computing[M]. Beijing:Tsinghua University Press,2005:5-8.
[13] 夏瑜潞. 人工神经网络的发展综述[J]. 电脑知识与技术,2019, 15(20):227-229. XIA Y L. A review of the development of artificial neural networks[J]. Computer Knowledge and Technology,2019, 15(20):227-229.
[14] 尹光志,李铭辉,李文璞,曹偈,李星. 基于改进BP 神经网 络的煤体瓦斯渗透率预测模型[J]. 煤炭学报,2013,38(7): 1179-1184. YIN G Z,LI M H,LI W P,CAO J,LI X. Model of coal gas permeability prediction based on improved BP neural network[J]. Journal of China Coal Society,2013,38(7): 1179-1184.
[15] JOZEFOWICZ R,ZAREMHA W,SUTSKEVER I. An empirical exploration of recurrent network architectures[C]. Lille:The 32nd International Conference on Machine Learning(ICML),2015:2342-2350.
[16] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006, 313:504-507.
[17] AREL I,ROSE D C,KARNOWSKI T P. Research frontier: deep machine learning-a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine,2010, 5(4):13-18.
[18] BENGIO Y,COURVILLE A,VINCENT P. Representation learning:a review and new perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,35(8): 1798-1828.
[19] 王雅思,姚鸿勋,孙晓帅,许鹏飞,赵思成. 深度学习中的自编 码器的表达能力研究[J]. 计算机科学,2015,42(9):56-60,65. WANG Y S,YAO H X,SUN X S,XU P F,ZHAO S C. Representation ability research of auto-encoders in deep learning[J]. Computer Science,2015,42(9):56-60,65.
[20] BENGIO Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning,2009,2(1):1-27.
[21] 胡金滨,唐旭清. 人工神经网络的BP 算法及其应用[J]. 信息 技术,2004(4):1-4. HU J B,TANG X Q. BP algorithm and its application in artificial neural network[J]. Information Technology, 2004(4):1-4.
[22] 庾佳,王鹏,桂志先,高刚. 自组织人工神经网络算法在储层预 测中的应用[J]. 当代化工,2019,48(7):1514-1518. YU J,WANG P,GUI Z X,GAO G. Application of selforganizing artificial neural network in reservoir prediction[J]. Contemporary Chemical Industry,2019,48(7):1514-1518.
[23] 马光志,胡韶峰. BP 算法稳定性与收敛性的一种改进[J]. 华中 科技大学学报(自然科学版),2002,30(12):21-22. MA G Z,HU S F. Improvement of the stability and convergence in BP algorithm[J]. Journal of Huazhong University of Science and Technology(Nature Science),2002,30(12):21-22.
[24] 王建国. SCADA 系统在天然气管道的集成应用[J]. 自动化与 仪表,2008,23(12):35-38. WANG J G. Integrated application of SCADA system in natural gas pipeline[J]. Automation & Instrumentation,2008, 23(12):35-38. [25] 李晓平,李天成,吕勃蓬,全恺,苏炤兴,刘思良. 天然气管道离 心压缩机的运行特性研究[J]. 压缩机技术,2013(3):33-37. LI X P,LI T C,LYU B P,QUAN K,SU Z X,LIU S L. Research on the operation characteristics of natural gas pipeline centrifugal compressor[J]. Compressor Technology, 2013(3):33-37.
[26] 李晓平,卓铭浩,吕勃蓬,万捷. 离心压缩机性能换算软件的开 发与应用[J]. 油气储运,2013,32(8):824-828. LI X P,ZHOU M H,LYU B P,WAN J. Development and application of performance conversion software for centrifugal compressor[J]. Oil & Gas Storage and Transportation,2013, 32(8):824-828.
[27] 刚毅凝,金成明,丁一,佟晓宁,徐志勇. 深度神经网络在风电功 率预测中的应用研究[J]. 信息技术,2020,44(1):150-152,158. GANG Y N,JIN C M,DING Y,TONG X N,XU Z Y. Research on application of deep neural networks to wind power prediction[J]. Information Technology,2020,44(1):150-152,158.
[28] 赵斌娟,刘琦,付燕霞,赵尤飞,廖文言,谢昀彤. 基于人工神经 网络的离心泵叶轮边界涡量流预测[J]. 排灌机械工程学报, 2020,38(2):127-132. ZHAO B J,LIU Q,FU Y X,ZHAO Y F,LIAO W Y,XIE Y T. Boundary vorticity flux prediction of the centrifugal pump impeller based on artificial neural network[J]. Journal of drainage and irrigation machinery engineering( JDIME),2020, 38(2):127-132.

相似文献/References:

[1]唐平,关志永,石睿,等.广东潮州大型LPG 冷库建设[J].油气储运,2011,30(06):472.[doi:10.6047/j.issn.1000-8241.2011.06.020]
 Tang Ping,Guan Yongzhi,Shi Rui,et al.Construction technique in Chaozhou LPG Freezer of Guangdong Province[J].Oil & Gas Storage and Transportation,2011,30(04):472.[doi:10.6047/j.issn.1000-8241.2011.06.020]
[2]肖刚,黄旭辉,严侃.DPC-2800 压缩机动力缸损伤故障与积炭原因[J].油气储运,2011,30(11):876.[doi:10.6047/j.issn.1000-8241.2011.11.022]
 Xiao Gang,Huang Xuhui,Yan Kan.Fault in the power cylinder of DPC-2800 compressor and carbon deposit[J].Oil & Gas Storage and Transportation,2011,30(04):876.[doi:10.6047/j.issn.1000-8241.2011.11.022]
[3]左汝宽,韩辉.影响压缩机干气密封使用寿命的因素分析[J].油气储运,2009,28(5):40.[doi:DOI:10.6047/j.issn.1000-8241.2009.05.012]
 ZUO Rukuan,HAN Hui.Factors Impacting on Service Life of Dry-gas Seal of Compressors[J].Oil & Gas Storage and Transportation,2009,28(04):40.[doi:DOI:10.6047/j.issn.1000-8241.2009.05.012]
[4]张石超,项卫东.RF2/3BB36型压缩机喘振线的测试方法[J].油气储运,2008,27(7):49.[doi:10.6047/j.issn.1000-8241.2008.07.014]
 ZHANG Shichao,XIANG Weidong.Method for Testing the Surge Line of RF2/3BB36 Gas Compressor[J].Oil & Gas Storage and Transportation,2008,27(04):49.[doi:10.6047/j.issn.1000-8241.2008.07.014]
[5]孙启敬,高顺华.西气东输管道压缩机组输送湿气实践分析[J].油气储运,2007,26(6):57.[doi:DOI:10.6047/j.issn.1000-8241.2007.06.017]
 SUN Qijing,GAO Shunhua.Practice in Wet Natural Transmission of West-to-East Gas Transmission Pipeline[J].Oil & Gas Storage and Transportation,2007,26(04):57.[doi:DOI:10.6047/j.issn.1000-8241.2007.06.017]
[6]沈珏新,王功礼.天然气长输管道设计中压缩机与驱动机选型[J].油气储运,1997,16(1):25.[doi:10.6047/j.issn.1000-8241.1997.01.006]
 Shen Yuxin,Wang Gongli.How to Select the Types of Compressors & Drivers for Design of Long-distance Natural Gas Pipeline[J].Oil & Gas Storage and Transportation,1997,16(04):25.[doi:10.6047/j.issn.1000-8241.1997.01.006]
[7]宋正治.进口压缩机密封环故障的排除[J].油气储运,1992,11(5):19.[doi:DOI:10.6047/j.issn.1000-8241.1992.05.007]
 Song Zhengzhi.Fixing the Breakdown of Sealing Ring of the Imported Compressor[J].Oil & Gas Storage and Transportation,1992,11(04):19.[doi:DOI:10.6047/j.issn.1000-8241.1992.05.007]
[8]邬建国,刘文泉.6HOS4型压缩机组填料失效故障分析[J].油气储运,2009,28(12):60.[doi:10.6047/j.issn.1000-8241.2009.12.020]
 WU Jianguo,LIU Wenquan.Analysis of Failure in Packing of 6HOS4 Compressor Set[J].Oil & Gas Storage and Transportation,2009,28(04):60.[doi:10.6047/j.issn.1000-8241.2009.12.020]
[9]刘春阳,肖刚,贾严刚,等.提高压缩机润滑油使用效率的措施[J].油气储运,2009,28(11):50.[doi:DOI:10.6047/j.issn.1000-8241.2009.11.013]
 LIU Chungyang,XIAO Gang.Measures to Increase Service Efficiency of Compressor Lubricant[J].Oil & Gas Storage and Transportation,2009,28(04):50.[doi:DOI:10.6047/j.issn.1000-8241.2009.11.013]
[10]卢鹏飞,戴家齐,叶德丰.开发同轴高速电动机驱动管道压缩机的设想[J].油气储运,2006,25(1):44.[doi:10.6047/j.issn.1000-8241.2006.01.012]
 LU Pengfei,DAI Jiaqi.Development Envisagement on Coaxal High-speed Electric Motor Driven Gas Compressor[J].Oil & Gas Storage and Transportation,2006,25(04):44.[doi:10.6047/j.issn.1000-8241.2006.01.012]

备注/Memo

(收稿日期:2018-01-17;修回日期:2020-03-11;编辑:王雪莉) 作者简介:王茀玺,男,1994 年生,助理工程师,2019 年硕士毕业 于中国石油大学(北京)石油与天然气工程专业,现主要从事输气管 网优化与压缩机特性分析相关的研究工作。地址:湖南省岳阳市岳 阳楼区中科工业园中科电气,414000。电话:18811597050。Email: msd451248174@qq.com 通信作者:宫敬,女,1962 年生,教授,博士生导师,1995 年博士毕 业于中国石油大学(北京)油气储运工程专业,现主要从事油气多相 管流及流动安全保障技术的研究工作。地址:北京市昌平区府学路 18 号,102249。电话:13501036944。Email:ydgj@cup.edu.cn

更新日期/Last Update: 2020-04-25