[1]刘全利 苗绘 吕新昱 周广言.中俄东线天然气管道工程DR 设备校验方法[J].油气储运,2020,39(04):453-458.[doi:10.6047/j.issn.1000-8241.2020.04.014]
 LIU Quanli,MIAO Hui,LYU Xinyu,et al.Calibration method of DR equipment in China–Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(04):453-458.[doi:10.6047/j.issn.1000-8241.2020.04.014]
点击复制

中俄东线天然气管道工程DR 设备校验方法

参考文献/References:

[1] 堵澄花,朱建平,赵洋. 数字探测器阵列X 射线成像检测设备试 验研究[J]. 设备管理与维修,2014(5):54-56. DU C H,ZHU J P,ZHAO Y. Experimental study on X-ray imaging equipment of digital detector array[J]. Plant Maintenance Engineering,2014(5):54-56.
[2] 宫敬,徐波,张微波. 中俄东线智能化工艺运行基础与实现的思 考[J]. 油气储运,2020,39(2):130-139. GONG J,XU B,ZHANG W B. Thinking on the basis and realization of intelligent process operation of China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation, 2020,39(2):130-139.
[3] 蔡永军,蒋红艳,王继方,王潇潇,李莉,陈国群,等. 智慧管道总 体架构设计及关键技术[J]. 油气储运,2019,38(2):121-129. CAI Y J,JIANG H Y,WANG J F,WANG X X,LI L,CHEN G Q,et al. The overall architecture design and key construction technologies of intelligent pipelines[J]. Oil & Gas Storage and Transportation,2019,38(2):121-129.
[4] 张海峰,蔡永军,李柏松,孙巍,王海明,杨喜良. 智慧管道站场 设备状态监测关键技术[J]. 油气储运,2018,37(8):841-849. ZHANG H F,CAI Y J,LI B S,SUN W,WANG H M,YANG X L. Key technologies of equipment condition monitoring at the station of intelligent pipeline[J]. Oil & Gas Storage and Transportation,2018,37(8):841-849.
[5] 税碧垣,张栋,李莉,薛鲁宁,陈国群. 智慧管网主要特征与建设 构想[J/OL]. 油气储运:1-8[2020-02-13]. http://kns.cnki.net/ kcms/detail/13.1093.TE.20200102.1521.006.html. SHUI B Y,ZHANG D,LI L,XUE L N,CHEN G Q. Main character ist ics and construction concept ion of intelligent pipeline network[J/OL]. Oil & Gas Storage and Transportation:1-8[2020-02-13]. http://kns.cnki.net/kcms/ detail/13.1093.TE.20200102.1521.006.html.
[6] 聂中文,黄晶,于永志,王永吉,单超,冯骋,等. 智慧管网的建设 进展及存在的问题[J]. 油气储运,2020,39(1):16-24. NIE Z W,HUANG J,YU Y Z,WANG Y J,SHAN C, FENG C,et al. Construction progress and existing problems of intelligent pipeline network[J]. Oil & Gas Storage and Transportation,2020,39(1):16-24.
[7] 熊明,古丽,吴志锋,邓勇,李双琴,邹妍,等. 在役油气管道数字 孪生体的构建及应用[J]. 油气储运,2019,38(5):503-509. XIONG M,GU L,WU Z F,DENG Y,LI S Q,ZOU Y,et al. Construction and application of digital twin in the in-service oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2019,38(5):503-509.
[8] 李柏松,王学力,徐波,孙巍,王新,赵云峰. 国内外油气管道运 行管理现状与智能化趋势[J]. 油气储运,2019,38(3):241-250. LI B S,WANG X L,XU B,SUN W,WANG X,ZHAO Y F. Operation and management status and intelligentization trend of global oil and gas pipelines[J]. Oil & Gas Storage and Transportation,2019,38(3):241-250.
[9] 李柏松,王学力,王巨洪. 数字孪生体及其在智慧管网应用的可 行性[J]. 油气储运,2018,37(10):1081-1087. LI B S,WANG X L,WANG J H. Digital Twin and its application feasibility to intelligent pipeline networks[J]. Oil & Gas Storage and Transportation,2018,37(10):1081-1087.
[10] 王巨洪,张世斌,王新,李荣光,王婷. 中俄东线智能管道数据 可视化探索与实践[J]. 油气储运,2020,39(2):169-175. WANG J H,ZHANG S B,WANG X,LI R G,WANG T. Exploration and practice of data visualization for intelligent pipeline in China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2020,39(2):169-175.
[11] 程玉峰. 保障中俄东线天然气管道长期安全运行的若干技术 思考[J]. 油气储运,2020,39(1):1-8. CHENG Y F. Technical insights into the long-term integrity and sustainability of China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2020,39(1):1-8.
[12] 刘玉卿,武玉梁,张振永. 中俄东线水平连续冷弯管管道沉管 下沟的可行性[J]. 油气储运,2020,39(2):215-221. LIU Y Q,WU Y L,ZHANG Z Y. Feasibility of loweringin of horizontal continuous cold bending pipes in China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2020,39(2):215-221.
[13] 张宏,吴锴,刘啸奔,杨悦,隋永莉,张振永. 直径1 422 mm X80 管道环焊接头应变能力数值模拟方法[J]. 油气储运, 2020,39(2):162-168. ZHANG H,WU K,LIU X B,YANG Y,SUI Y L,ZHANG Z Y. Numerical simulation method for strain capacity of girth welding joint on X80 pipeline with 1 422 mm diameter[J]. Oil & Gas Storage and Transportation,2020,39(2):162-168.
[14] 迟凤明,张成,郭福友,罗伟国. 中俄东线黑龙江穿越测量的关 键问题[J]. 油气储运,2017,36(12):1462-1466. CHI F M,ZHANG C,GUO F Y,LUO W G. Key issues on the crossing survey of China–Russia Eastern Gas Pipeline in Heilongjiang River[J]. Oil & Gas Storage and Transportation, 2017,36(12):1462-1466.
[15] 赵新伟,池强,张伟卫,杨峰平,许春江. 管径 1 422 mm 的 X80 焊管断裂韧性指标[J]. 油气储运,2017,36(1):37-43. ZHAO X W,CHI Q,ZHANG W W,YANG F P,XU C J. Fracture toughness indicators of OD 1 422 mm X80 welded steel pipe[J]. Oil & Gas Storage and Transportation,2017,36(1): 37-43.
[16] 张振永,周亚薇,张金源. 现行设计系数对中俄东线OD 1 422 mm 管道的适用性[J]. 油气储运,2017,36(3):319-324. ZHANG Z Y,ZHOU Y W,ZHANG J Y. Applicability of current design coefficient to OD 1 422 mm pipelines in China– Russia East Natural Gas Pipeline[J]. Oil & Gas Storage and Transportation,2017,36(3):319-324.
[17] 张振永,张文伟,周亚薇,薄国公,邹宇. 中俄东线OD 1 422 mm 埋地管道的断裂控制设计[J]. 油气储运,2017,36(9):1059-1064. ZHANG Z Y,ZHANG W W,ZHOU Y W,BO G G,ZOU Y. The fracture control design of the OD 1 422 mm buried pipeline in China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2017,36(9):1059-1064.
[18] 任海宾,陈光联,黄文杰,吕宝辉. 中俄东线岛状多年冻土现状 及退化原因[J]. 油气储运,2017,36(12):1347-1352. REN H B,CHEN G L,HUANG W J,LYU B H. The status and degradation causes of patchy permafrost along China– Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2017,36(12):1347-1352.
[19] 宫爽,陈光联,赵园园. 中俄东线黑龙江穿越地质条件分析及 方案选择[J]. 油气储运,2018,37(12):1385-1392. GONG S,CHEN G L,ZHAO Y Y. Geological conditions analysis and schemes selection on Heilongjiang River crossing project of China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2018,37(12):1385-1392.
[20] 代小华,张文伟,余志峰,董平省,毛平平,徐靖宇. 基于系统可 靠性的压缩机备用方案[J]. 油气储运,2018,37(12):1335-1340. DAI X H,ZHANG W W,YU Z F,DONG P S,MAO P P,XU J Y. Standby compressor scheme based on system reliability[J]. Oil & Gas Storage and Transportation,2018,37(12):1335-1340.
[21] 毕光辉,任文明,曹阳. 中俄东线黑龙江穿越管道安装设计方 案[J]. 油气储运,2018,37(8):935-940. BI G H,REN W M,CAO Y. Pipeline installation design for Heilongjiang crossing of China–Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2018,37(8):935-940.
[22] 姜昌亮. 中俄东线天然气管道工程管理与技术创新[J]. 油气储 运,2020,39(2):121-131. JIANG C L. Management and technological innovation in China–Russia Eastern Gas Pipeline Project[J]. Oil & Gas Storage and Transportation,2020,39(2):121-131.

相似文献/References:

[1]张振永,孟献强,孙学军,等.中俄东线站场工艺管道用高钢级低温钢管韧性指标[J].油气储运,2018,37(4):435.[doi:10.6047/j.issn.1000-8241.2018.04.012]
 ZHANG Zhenyong,MENG Xianqiang,SUN Xuejun,et al.Toughness index of low-temperature pipe of high steel grade used for the process pipelines at the station of China-Russia eastern natural gas pipeline[J].Oil & Gas Storage and Transportation,2018,37(04):435.[doi:10.6047/j.issn.1000-8241.2018.04.012]
[2]赵国辉.长输油气管道自控技术的发展与中俄东线SCADA系统[J].油气储运,2020,39(01):1.
 ZHAO Guohui.Development of long-distance oil and gas pipeline automatic control technology and SCADA system for China–Russia Eastern Gas Pipeline [J].Oil & Gas Storage and Transportation,2020,39(04):1.
[3]闫锋,欧阳欣,王鹏宇,等.输气管道干线强度设计原则[J].油气储运,2016,35(10):1112.[doi:10.6047/j.issn.1000-8241.2016.10.016]
 YAN Feng,OUYANG Xin,WANG Pengyu,et al.Strength design principles for main gas pipelines[J].Oil & Gas Storage and Transportation,2016,35(04):1112.[doi:10.6047/j.issn.1000-8241.2016.10.016]
[4]王巨洪 姜有文 滕延平.中俄东线阴极保护远程监控系统的建设实践[J].油气储运,2020,39(01):1.
 WANG Juhong,JIANG Youwen,TENG Yanping.Construction practice of remote monitoring system for cathodic protection in China–Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(04):1.
[5]刘阳 李雨佳 牛亚琨 王天祺.中俄东线无损检测技术及AUT质量控制体系[J].油气储运,2020,39(中俄东线):1.[doi:10.6047/j.issn.1000-8241.2020.00.000]
 LIU Yang,LI Yujia,NIU Yakun,et al.NDT technology and AUT quality control system applied in China-Russia Eastern Gas Pipeline Project[J].Oil & Gas Storage and Transportation,2020,39(04):1.[doi:10.6047/j.issn.1000-8241.2020.00.000]
[6]张振永,张文伟,周亚薇,等.中俄东线OD 1 422 mm 埋地管道的断裂控制设计[J].油气储运,2017,36(9):1059.[doi:10.6047/j.issn.1000-8241.2017.09.013]
 ZHANG Zhenyong,ZHANG Wenwei,ZHOU Yawei,et al.The fracture control design of the OD 1 422 mm buried pipeline in China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2017,36(04):1059.[doi:10.6047/j.issn.1000-8241.2017.09.013]
[7]赵园园,陈光联,宫爽.中俄东线黑龙江段地质灾害的特征及危险性[J].油气储运,2018,37(2):216.[doi:10.6047/j.issn.1000-8241.2018.02.015]
 ZHAO Yuanyuan,CHEN Guanglian,GONG Shuang.Characteristics and risk of geological disaster along China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(04):216.[doi:10.6047/j.issn.1000-8241.2018.02.015]
[8]毕光辉,任文明,曹阳,等.中俄东线黑龙江穿越管道安装设计方案[J].油气储运,2018,37(8):935.[doi:10.6047/j.issn.1000-8241.2018.08.015]
 BI Guanghui,REN Wenming,CAO Yang,et al.Pipeline installation design for Heilongjiang crossing of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(04):935.[doi:10.6047/j.issn.1000-8241.2018.08.015]
[9]宫爽,陈光联,赵园园.中俄东线黑龙江穿越地质条件分析及方案选择[J].油气储运,2018,37(12):1385.[doi:10.6047/j.issn.1000-8241.2018.12.011]
 GONG Shuang,CHEN Guanglian,ZHAO Yuanyuan.Geological conditions analysis and schemes selection on Heilongjiang River crossing project of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(04):1385.[doi:10.6047/j.issn.1000-8241.2018.12.011]
[10]郭文朋,周亚薇.基于改进风险矩阵法的中俄东线高后果区风险评估[J].油气储运,2019,38(03):273.[doi:10.6047/issn.1000-8241.2019.03.005]
 GUO Wenpeng,ZHOU Yawei.Risk assessment of high consequence areas in China-Russia Eastern Gas Pipeline Project based on the modified risk matrix method[J].Oil & Gas Storage and Transportation,2019,38(04):273.[doi:10.6047/issn.1000-8241.2019.03.005]

备注/Memo

(收稿日期:2020-02-12;修回日期:2020-02-18;编辑:刘朝阳) 基金项目:中石油管道有限责任公司课题“高钢级管道环焊缝无 损检测技术研究”,2018B-3007-0501。 作者简介:刘全利,男,1967 年生,教授级高工,1992 年毕业于 华东工学院光电技术专业,现主要从事长输油气管道无损检测技 术的研究工作。地址:河北省廊坊市广阳区金光道44 号,065000。 电话:0316-2074551。Email:lqlmch@163.com

更新日期/Last Update: 2020-04-25