[1]黄芳飞 林德才 王博 陈晨 吴海浩 康琦 史博会 宫敬.多相混输临界携砂速度研究进展[J].油气储运,2019,38(11):1201-1211.[doi:10.6047/j.issn.1000-8241.2019.11.001]
 HUANG Fangfei,LIN Decai,WANG Bo,et al.Research progress on the critical sand carrying velocity of multiphase mixed transport[J].Oil & Gas Storage and Transportation,2019,38(11):1201-1211.[doi:10.6047/j.issn.1000-8241.2019.11.001]
点击复制

多相混输临界携砂速度研究进展

参考文献/References:

[1] 宫敬,王玮. 海洋油气混输管道流动安全保障[M]. 北京:科学 出版社,2016:2-3. GONG J,WANG W. Flow assurance for offshore oil and gas pipelines[M]. Beijing:Science Press,2016:2-3. [2] 焦艳红,李萍,王利华,等. 高黏度流体垂直井筒携砂临界流速 实验与计算[J]. 石油学报,2018,39(5):604-608. JIAO Y H,LI P,WANG L H,et al. Experiment and calculation of critical sand-carrying velocity for high-viscosity fluid in vertical wellbore[J]. Acta Petrolei Sinica,2018,39(5):604-608. [3] 王飞,王运,郑利军,等. 携砂管流临界输运特性研究进展[J]. 北 京石油化工学院学报,2018,26(2):45-50. WANG F,WANG Y,ZHENG L J,et al. Research advances in critical transport characteristics of pipe flow with sand[J]. Journal of Beijing Institute of Petro-chemical Technology,2018, 26(2):45-50. [4] 张炜,白凤龙,邵明娟,等. 日本海域天然气水合物试采进展及其 对我国的启示[J]. 海洋地质与第四纪地质,2017,37(5):27-33. ZHANG W,BAI F L,SHAO M J,et al. Progress of offshore natural gas hydrate production tests in Japan and implications[J]. Marine Geology & Quaternary Geology,2017,37(5):27-33. [5] 李明忠,王卫阳,何岩峰,等. 垂直井筒携砂规律研究[J]. 石油大 学学报(自然科学版),2000,24(2):33-35,43. LI M Z,WANG W Y,HE Y F,et al. Experimental study on the performance of sand moving in vertical wellbore[J]. Journal of the University of Petroleum,China(Edition of Natural Science), 2000,24(2):33-35,43. [6] 刘爱萍,邓金根. 垂直井简低黏度液流最小携砂速度研究[J]. 石 油钻采工艺,2007,29(1):31-33. LIU A P,DENG J G. Research on critical sand transportation velocity for low viscosity liquid flow in vertical well-bore[J]. Oil Drilling & Production Technology,2007,29(1):31-33. [7] 董长银,陈新安,阿雪庆,等. 产水气井井筒携砂机制及携砂能 力评价试验与应用[J]. 中国石油大学学报(自然科学版),2014, 38(6):90-96. DONG C Y,CHEN X A,A X Q,et al. Experimental study on mechanism and capability of sand-carrying in water-producing gas wells and its application[J]. Journal of China University of Petroleum(Edition of Natural Science),2014,38(6):90-96. [8] 覃昊. 管线中气体携砂临界流速实验分析[J]. 当代化工,2018, 47(4):757-760. QIN H. Experimental analysis on critical flow velocity of gas sand-carrying in pipelines[J]. Contemporary Chemical Industry, 2018,47(4):757-760. [9] DABIRIAN R,MOHAN R,SHOHAM O,et al. Sand transport in slightly upward inclined multiphase flow[J]. Journal of Energy Resources Technology,2018,140(7):072901-072908. [10] DABIRIAN R. Modeling and experimental investigation of sand transport in gas-liquid stratified flow[D]. Tulsa:The University of Tulsa,2018:24-38. [11] NAJMI K,MCLAURY B S,SHIRAZI S A,et al. Low concentration sand transport in multiphase viscous horizontal pipes:An experimental study and modeling guideline[J]. AIChE Journal,2016,62(5):1821-1833. [12] 石凯月,何利民,罗小明,等. 管道砂沉积与流体携砂临界速度 研究进展及展望[J]. 中国海上油气,2018,30(3):188-196. SHI K Y,HE L M,LUO X M,et al. Research progress and 黄芳飞,等:多相混输临界携砂速度研究进展 1210 yqcy.paperopen.com prospect of sand deposition and sand transportation critical velocities in pipelines[J]. China Offshore Oil and Gas,2018, 30(3):188-196. [13] 王治中,邓金根,孙福街,等. 井筒砂粒运移规律室内模拟实验 研究[J]. 石油学报,2006,27(4):130-132,138. WANG Z Z,DENG J G,SUN F J,et al. Experimental study on sand grain migration in wellbore[J]. Acta Petrolei Sinica,2006, 27(4):130-132,138. [14] 董长银,高凯歌,王鹏,等. 低黏液体井筒携砂流动规律及特征 流速实验[J]. 石油学报,2016,37(10):1280-1286. DONG C Y,GAO K G,WANG P,et al. Sand-carrying flow in low-viscosity wellbore fluid and characteristic flow velocities[J]. Acta Petrolei Sinica,2016,37(10):1280-1286. [15] WICKS M. Transport of solids at low concentration in horizontal pipes//advances in solid-liquid flow in pipes & its application[M]. Amsterdam:Elsevier Inc.,1971:101-124. [16] KING M J S,FAIRHURST C P,HILL T J. Solids transport in multiphase flows - Application to high-viscosity systems[J]. Journal of Energy Resources Technology,2001,123(3):200-204. [17] KIM C,LEE M,HAN C. Hydraulic transport of sand-water mixtures in pipelines:Part I. Experiment[J]. Journal of Mechanical Science and Technology,2008,22(12):2534-2541. [18] DANIELSON T J. Sand transport modeling in multiphase pipelines[C]. Houston:Offshore Technology Conference,2007: OTC 18691. [19] AL-LABABIDI S,YAN W,YEUNG H. Sand transportations and deposition characteristics in multiphase flows in pipelines[J]. Journal of Energy Resources Technology,2012, 134(3):034501-1-034501-13. [20] 刘达京. 适度出砂开采水平井筒携砂流动规律研究[D]. 大庆: 东北石油大学,2014:12-14. LIU D J. Study on sand carrying flow regular of appropriate sand production horizontal well[D]. Daqing:Northeast Petroleum University,2014:12-14. [21] ZEINALI H,TOMA P,KURU E. Effect of near-wall turbulence on selective removal of particles from sand beds deposited in pipelines[J]. Journal of Energy Resources Technology,2012,134(2):021003-1-021003-9. [22] SPELAY R B,GILLIES R G,HASHEMI S A,et al. Effect of pipe inclination on the deposition velocity of settling slurries[J]. The Canadian Journal of Chemical Engineering,2016,94(6):1032-1039. [23] IBARRA R,MOHAN R S,SHOHAM O. Investigation of critical sand-deposition velocity in horizontal gas/liquid stratified flow[J]. SPE Production & Operations,2017,32(3): 218-227. [24] HULSURKAR P,AWOLEKE O,AHMADI M. Experimental study of the multiphase flow of sand,viscous oil,and gas in a horizontal pipe[C]. San Antonio:SPE Annual Technical Conference and Exhibition,2017:SPE-187212-MS. [25] ZORGANI E,AL-AWADI H,YAN W,et al. Viscosity effects on sand flow regimes and transport velocity in horizontal pipelines[J]. Experimental Thermal and Fluid Science,2018,92: 89-96. [26] WANG D Y,WANG Z M,ZENG Q S. An experimental study on gas/liquid/solid three-phase flow in horizontal coalbed methane production wells[J]. Journal of Petroleum Science and Engineering,2019,174:1009-1021. [27] 焦艳红,邓金根,牟善波. 垂直井筒出砂开采最小携砂速度计 算[J]. 西部探矿工程,2010,22(3):101-103. JIAO Y H,DENG J G,MU S B. Calculation of minimum sandcarrying velocity in vertical wellbore production[J]. West-China Exploration Engineering,2010,22(3):101-103. [28] OLAWALE T F,ALIYU M A,YAHAYA D B,et al. Sand minimum transport conditions in gas-solid-liquid threephase stratified flow in a horizontal pipe at low particle concentrations[J]. Chemical Engineering Research and Design, 2019,143:114-126. [29] 曾思睿,董长银,卫然,等. 水平井不同倾角井筒临界携砂流 速对比实验及其拟合应用[J]. 大庆石油地质与开发,2018, 37(6):54-59. ZENG S R,DONG C Y,WEI R,et al. Comparing experiments and their matching application of the borehole critical sandcarrying velocity in the horizontal well with different pitching angles[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(6):54-59. [30] SALAMA M M. Sand production management[J]. Journal of Energy Resources Technology,2000,122(1):29-33. [31] DABIRIAN R,ARABNEJAD K H,MOHAN R S,et al. Numerical simulation and modeling of critical sand-deposition velocity for solid/liquid flow[J]. SPE Production and Operations,2018,33(4):866-878. [32] YAN W. Sand transport in multiphase pipelines[D]. Bedfordshire:Cranfield University,2010:130-131. [33] LEI D S,SHI L,CAO L. The flow research of gas-oil-sand three phase in wellbore with heavy oil reservoir[C]. Bali Island:International Conference of Environmental Science and Engineering,2011:318-324. [34] BATCHELOR G K J. Sedimentation in a dilute dispersion of spheres[J]. Journal of Fluid Mechanics,1972,52(2):245-268. [35] HAWKSLEY P G. The effect of concentration on the settling of suspensions and flow through porous media:in some aspects of fluid flow[J]. Edward Arnold Co,1951(4):114-135. [36] 张忠禄. 气液固流动机理及气井井筒的携液携砂能力研究[D]. 青岛:中国石油大学(华东),2013:23-24. ZHANG Z L. Study on mechanism of gas-liquid-solid flow and liquid-carrying capacity and sand-carrying capacity of gas well[D]. Qingdao:China University of Petroleum(East China),2013:23-24. [37] HAIDER A,LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and non-spherical particles[J]. Powder Technology,1989,58(1):63-70. [38] SWAMEE P K,OJHA C S P. Drag coefficient and fall velocity of nonspherical particles[J]. Journal of Hydraulic Engineering, 1991,117(5):660-667. [39] GANSER G H. A rational approach to drag prediction of spherical and nonspherical particles[J]. Powder Technology, 1993,77(2):143-152. [40] CHEIN S F. Settling velocity of irregularly shaped particles[J]. SPE Drilling & Completion,1994,9(4):281-289. [41] TRAN-CONG S,GAY M,MICHAELIDES E E. Drag coefficients of irregularly shaped particles[J]. Powder Technology,2004,139(1):21-32. [42] LOTH E. Drag of non-spherical solid particles of regular and irregular shape[J]. Powder Technology,2008,182(3):342-353. [43] HOLZER A,SOMMERFELD M. New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology,2008,184(3):361-365. [44] KISHORE N,GU S. Wall effects on flow and drag phenomena of spheroid particles at moderate Reynolds numbers[J]. Industrial & Engineering Chemistry Research,2010,49(19):9486-9495. [45] REN B,ZHONG W,JIN B,et al. Study on the drag of a cylinder-shaped particle in steady upward gas flow[J]. Industrial & Engineering Chemistry Research,2011,50(12):7593-7600. [46] RICHTER A,NIKRITYUK P A. New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack[J]. Powder Technology,2013,249:463-474. [47] QI Z,KUANG S,RONG L,et al. Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow[J]. Powder Technology,2018, 326:208-221. [48] KE C,SHU S,ZHANG H,et al. On the drag coefficient and averaged Nusselt number of an ellipsoidal particle in a fluid[J]. Powder Technology,2018,325:134-144. [49] XIONG B,ZHANG H,AN X Z. Boundary effects on the drag coefficient and average Nusselt number of a sphere in SCW:A comparative study[J]. Engineering Analysis with Boundary Elements,2019,102:1-10. [50] SONG D,GUPTA R K,CHHABRA R P. Wall effects on a sphere falling in quiescent power law fluids in cylindrical tubes[J]. Industrial & Engineering Chemistry Research,2009, 48(12):5845-5856. [51] HOTTOVY J D,SYLVESTER N D. Drag coefficients for irregularly shaped particles[J]. Industrial & Engineering Chemistry Process Design and Development,1979,18(3):433-436.

相似文献/References:

[1]张争伟,宇波,孙长征,等.海底管道油水两相混合输送的数值模拟[J].油气储运,2009,28(9):13.[doi:10.6047/j.issn.1000-8241.2009.09.004]
 ZHANG Zhengwei,YU Bo.Numerical Simulation on Oil-water Two-phase Mixing Transportation of Submarine Pipeline[J].Oil & Gas Storage and Transportation,2009,28(11):13.[doi:10.6047/j.issn.1000-8241.2009.09.004]
[2]向敏,宫敬.管输原油沥青质沉积机理与预测模型[J].油气储运,2010,29(1):1.[doi:10.6047/j.issn.1000-8241.2010.01.001]
 Xiang Min,Gong Jing.Asphaltene Deposition Mechanism and Prediction Model for Piped Crude Oil[J].Oil & Gas Storage and Transportation,2010,29(11):1.[doi:10.6047/j.issn.1000-8241.2010.01.001]
[3]黄芳飞 林德才 王博 陈晨 吴海浩 康琦 史博会 宫敬.多相混输临界携砂速度研究进展[J].油气储运,2019,38(08):1.
 HUANG Fangfei,LIN Decai,WANG Bo,et al.Research progress on the critical sand carrying velocity of multiphase mixed transport[J].Oil & Gas Storage and Transportation,2019,38(11):1.

备注/Memo

基金项目:中国地质调查局水合物项目“天然气水合物试采工程技术支撑项目”,DD20190232;北京市自然科学基金资助项目“深水油气混输管道中赋存蜡的水合物生成传热传质机制研究”,3192027;国家自然科学基金资助项目“含蜡原油常温输送机理及流动改性方法研究”,51534007;国家重点研发计划“基于深水功能舱的全智能新一代水下系统关键技术研究”,2016YFS0303704;国家重大科技专项“海上管道降凝输送及流动管理技术研究”,2016ZX05028004-001;国家“十三· 五”科技重大专项“多气合采全开发周期集输及处理工艺”,2016ZX05066005-001;111 引智计划“海洋油气生产安全工程创新引智基地项目”,B18054。
作者简介:黄芳飞,男,1982 年生,工程师,2007 年毕业于西南石油大学石油工程专业,现主要从事海域天然气水合物试采的研究工作。地址:广东省广州市黄埔区广海路188 号,510075。电话:13726906303。Email:570830520@qq.com
编辑:王雪莉

更新日期/Last Update: 2019-11-25