分享
[1]刘冀宁 董绍华 张菁 东静波 陈一诺.管线钢应力诱导型氢致开裂分形试验[J].油气储运,2019,38(08):870-876.
 LIU Jining,DONG Shaohua,ZHANG Jing,et al.Fractal experiment on stress oriented hydrogen induced cracking of pipeline steel[J].Oil & Gas Storage and Transportation,2019,38(08):870-876.
点击复制

管线钢应力诱导型氢致开裂分形试验

参考文献/References:

[1] GOUTAM G,PAUL R,RAJNISH G,et al. Hydrogen induced cracking of pipeline and pressure vessel steels:A review[J]. Engineering Fracture Mechanics,2018,199:609-618.
[2] BTIOTTET L,BATISSE R,DINECHIN G D,et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J]. International Journal of Hydrogen Energy,2012,37(11):9423-9430.
[3] 宋静,马晓强,郭东升. 天然气管道爆裂事故原因及防范措 施[J]. 油气储运,2014,33(4):385-390. SONG J,MA X Q,GUO D S. Causes and preventive measures against explosion accident of gas pipeline[J]. Oil & Gas Storage and Transportation,2014,33(4):385-390.
[4] 周亚薇,张振永. 中俄东线天然气管道环焊缝断裂韧性设计[J]. 油气储运,2018,37(10):1174-1179. ZHOU Y W,ZHANG Z Y. The design for the fracture toughness of girth weld in China-Russia Eastern Gas Pipeline[J]. Oil & Gas Storage and Transportation,2018,37(10):1174-1179.
[5] 陈娟,季峰,刘学彬,等. 低温环境下在役管道焊接氢致裂纹的 控制措施[J]. 油气储运,2014,33(12):1297-1300. CHEN J,JI F,LIU X B,et al. Control measures of in-service pipeline welding hydrogen-induced crack under low temperature environment[J]. Oil & Gas Storage and Transportation,2014, 33(12):1297-1300.
[6] WANG Y,GONG J,JIANG W. A quantitative description on fracture toughness of steels in hydrogen gas[J]. International Journal of Hydrogen Energy,2013,38(28):12503-12508.
[7] CHATZIDOUROS E V,TRAIDIA A,DEVARAPALLI R S, et al. Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions[J]. International Journal of Hydrogen Energy,2018,43(11): 5747-5759.
[8] 董绍华. 管道完整性评估理论与应用[M]. 北京:石油工业出版社,2014:169-180. DONG S H. Pipeline integrity assessment theory and application[M]. Beijing:Petroleum Industry Press,2014:169-180.
[9] 赵新伟,张广利,张良,等. 外加电位对X80 管线钢近中性pH 土壤应力腐蚀开裂行为的影响[J]. 油气储运,2014,33(11): 1152-1158. ZHAO X W,ZHANG G L,ZHANG L,et al. Influence of applied potential on stress corrosion cracking behavior of X80 pipeline steel in near-neutral pH soil environments[J]. Oil & Gas Storage and Transportation,2014,33(11):1152-1158.
[10] 刘艳,屈定荣,伯士成,等. L245 管线钢硫化氢腐蚀模拟试 验[J]. 油气储运,2018,37(7):804-809. LIU Y,QU D R,BAI S C,et al. Simulation experiment on the corrosion of L245 pipeline steel in hydrogen sulfide environment[J]. Oil & Gas Storage and Transportation,2018 37(7):804-809.
[11] ABDERRAZAK T,MARCO A,GILLES L,et al. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines[J]. International Journal of Hydrogen Energy,2012,37(21):16214-16230.
[12] ZHANG T,YONG W,ZHAO W,et al. Hydrogen permeation parameters of X80 steel and welding HAZ under high pressure[J]. Acta Metallurgica Sinica,2015,51(9):1101-1110.
[13] MENG B,GU C,ZHANG L,et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy,2017,42(11): 7404-7412.
[14] GUAN X R,ZHANG D L,WANG J J,et al. Numerical and electrochemical analyses on carbon dioxide corrosion of X80 pipeline steel under different water film thicknesses in NACE solution[J]. Journal of Natural Gas Science and Engineering, 2017,37:199-216.
[15] MOHTADI M A,ESKANDARI M,SZPUNAR J A. Role of cold rolled followed by annealing on improvement of hydrogen induced cracking resistance in pipeline steel[J]. Engineering Failure Analysis,2018,91:172-181.
[16] MANDELBROT B. The fractal geometry of nature[J]. Journal of the Royal Statistical Society:Series A(General), 1984,147(4):616-618 .
[17] 褚武林. 断裂韧性测试[M]. 北京:科学出版社,1979:89-118. CHU W L. Fracture toughness test[M]. Beijing:Science Press, 1979:89-118.
[18] LI L F,SONG B,CAI Z Y,et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science and Engineering: A,2019,742:712-721.
[19] ZHANG S Q,FAN E,WAN J F,et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel[J]. Corrosion Science,2018,139:83-96.
[20] XIE F,LI X,WANG D,et al. Synergistic effect of sulphatereducing bacteria and external tensile stress on the corrosion behaviour of X80 pipeline steel in neutral soil environment[J].
[21] ENYINNAYA O,JERZY S,FATEH F,et al. Hydrogen induced cracking susceptibility of API 5L X70 pipeline steel in relation to microstructure and crystallographic texture developed after different thermomechanical treatments[J]. Materials Characterization,2018,145:142-156.
[22] 董绍华. 管道完整性管理技术与实践[M]. 北京:中国石化出 版社,2015:179-285. DONG S H. Pipeline Integrity management technology and practice[M]. Beijing:China Petrochemical Press,2015: 179-285.
[23] DONG S H,LYU Y M,ZHANG Y,et al. Fractal research on cracks propagation of gas pipeline X52 steel welding line under hydrogen environment[J]. Acta Metallurgica Sinica, 2001,14(3):219-226.
[24] DONG S H,LYU Y M. Fractal model of hydrogen induced cracking[J]. Journal of Chinese Society for Corrosion & Protection,2001,21(2):111-115.
[25] 董绍华. 天然气管道氢致开裂失效行为研究[D]. 北京:石油 大学,2001:19-46. DONG S H. Research on failure behavior of hydrogen induced cracking in natural gas pipeline[D]. Beijing:China University of Petroleum,2001:19-46.

相似文献/References:

[1]张涛,李著信,苏毅,等.高强度管道钢氢致开裂门槛应力测定[J].油气储运,2002,21(8):31.[doi:10.6047/j.issn.1000-8241.2002.08.009]
 ZHANG Tao,LI Zhuxin.Quantitative Study on the Threshold Stress of Hydrogen-induced Cracking for X80 Pipeline Steel[J].Oil & Gas Storage and Transportation,2002,21(08):31.[doi:10.6047/j.issn.1000-8241.2002.08.009]
[2]董绍华.油气管道氢损伤失效行为研究进展[J].油气储运,2000,19(4):1.[doi:10.6047/j.issn.1000-8241.2000.04.001]
 Dong Shaohua.Research and Development on the Hydrogen-damaged Problem of Oil and Gas Transmission Pipeline[J].Oil & Gas Storage and Transportation,2000,19(08):1.[doi:10.6047/j.issn.1000-8241.2000.04.001]
[3]付安庆,吕乃欣,白真权,等.交流杂散电流对长输管线钢腐蚀行为的影响[J].油气储运,2014,33(7):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
 FU Anqing,LYU Naixin,BAI Zhenquan,et al.Impacts of AC stray current on the corrosion behavior of pipe steel for long-distance pipeline[J].Oil & Gas Storage and Transportation,2014,33(08):748.[doi:10.6047/j.issn.1000-8241.2014.07.013]
[4]郭磊,姜珊,彭常飞,等.X80 与X100 级管线钢裂纹扩展模拟分析[J].油气储运,2014,33(10):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
 GUO Lei,JIANG Shan,PENG Changfei,et al.A simulation analysis of crack growth for X80 and X100 pipeline steels[J].Oil & Gas Storage and Transportation,2014,33(08):1066.[doi:10.6047/j.issn.1000-8241.2014.10.009]
[5]樊学华,李向阳,董磊,等.国内抗大变形管线钢研究及应用进展[J].油气储运,2015,34(3):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
 FAN Xuehua,LI Xiangyang,DONG Lei,et al.Progress in research and application of pipeline steels with high deformation resistance in China[J].Oil & Gas Storage and Transportation,2015,34(08):237.[doi:10.6047/j.issn.1000-8241.2015.03.003]
[6]张冬娜,戚东涛,邵晓东,等.复合材料增强管线钢管结构设计[J].油气储运,2017,36(10):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
 ZHANG Dongna,QI Dongtao,SHAO Xiaodong,et al.Structural design of composite reinforced line pipe[J].Oil & Gas Storage and Transportation,2017,36(08):1190.[doi:10.6047/j.issn.1000-8241.2017.10.015]
[7]刘艳,屈定荣,伯士成,等.L245 管线钢硫化氢腐蚀模拟试验[J].油气储运,2018,37(7):804.[doi:10.6047/j.issn.1000-8241.2018.07.013]
 LIU Yan,QU Dingrong,BAI Shicheng,et al.Simulation experiment on the corrosion of L245 pipeline steel in hydrogen sulfide environment[J].Oil & Gas Storage and Transportation,2018,37(08):804.[doi:10.6047/j.issn.1000-8241.2018.07.013]
[8]刘冀宁 董绍华 张菁 东静波 陈一诺.管线钢应力诱导型氢致开裂分形试验[J].油气储运,2019,38(04):1.
 LIU Jining,DONG Shaohua,ZHANG Jing,et al.Fractal experiment on stress orientation hydrogen induced cracking of pipeline steel[J].Oil & Gas Storage and Transportation,2019,38(08):1.

备注/Memo

基金项目:国家重点研发计划资助项目“油气长输管道及储运设施检验评价与安全保障技术”,2016YFC0802100;国家自然科学基金资助项目“X80 管线钢氢损伤失效行为与完整性评价模型研究”,51874322。
作者简介:刘冀宁,男,1977 年生,高级工程师,2005 年硕士毕业于中国地质大学(武汉)科学技术史专业,现主要从事油气田地面工程规划、设计及腐蚀防护技术的研究工作。地址:新疆自治区乌鲁木齐市新市区长春南路466 号,830011。电话:0991-3161434。Email:52129699@qq.com
编辑:韩文超

更新日期/Last Update: 2019-08-25