分享
[1]唐霏,彭星煜.基于RS-BP神经网络的增压站能效评价及预测[J].油气储运,2019,38(03):314-320.[doi:10.6047/j.issn.1000-8241.2019.03.012]
 TANG Fei,PENG Xingyu.Energy efficiency evaluation and prediction of booster stations based on RS-BP Neural Network[J].Oil & Gas Storage and Transportation,2019,38(03):314-320.[doi:10.6047/j.issn.1000-8241.2019.03.012]
点击复制

基于RS-BP神经网络的增压站能效评价及预测

参考文献/References:

[1] 李雪峰.油气田集输系统的能耗评价与能损分析 [J].应用能源技术,2009(6):5-7.
LI X F.Energy consumption evaluation and analysis of oil-gas gathering and transferring system[J].Applied Energy Technology,2009(6):5-7.
[2] LEUNG H F,LAM H K,LING S H,et al.Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J].IEEE Trans on Neural Networks,2003, 14(1):79-88.
[3] TSAI J T,CHOU J H,LIU T K.Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J].IEEE Trans on Neural Networks,2006,17(1): 69-80.
[4] 邓万宇,郑庆华,陈琳,等.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287.
DENG W Y,ZHENG Q H,CHEN L,et al.Research on extreme learning of neural networks[J].Chinese Journal of Computers, 2010,33(2):279-287.
[5] 王伟,吴敏,雷琪,等 .炼焦生产过程综合生产指标的改进神经网络预测方法[J].控制理论与应用,2009,26(12):1419-1424.
WANG W,WU M,LEI Q,et al.An improved neural network method for the prediction of comprehensive production indices in coking process[J].Control Theory & Applications,2009,26(12): 1419-1424.
[6] 张静,宋锐,郁文贤.雷达目标识别中的 BP神经网络算法改进及应用[J].系统工程与电子技术,2005,27(4):582-585.
ZHANG J,SONG R,YU W X.Improvements and applications of BP neural network algorithm in radar target recognition[J].Systems Engineering and Electronics,2005, 27(4):582-585.
[7] PAWLAK Z.Rough sets[J].International of Information and Computer Sciences,1982,11(5):341-345.
[8] 王刚,张志禹.粗糙集结合 BP神经网络的数据融合方法研究[J].西安理工大学学报,2006,22(3):311-314.
WANG G,ZHANG Z Y.A study of data fusion based on combining rough set with BP Neural Network[J].Journal of Xi'an University of Technology,2006,22(3):311-314.
[9] SWINIARSKI R W,HARGIS L.Rough sets as a front end of neural-networks texture classifiers[J].Neurocomputing,2001, 36(1):85-102.
[10] ZHAO Y P,SUN J G.Rough m-support vector regression[J].Expert Systems with Applications,2009,36(6):9793-9798.
[11] JIANG F,SUI Y F,CAO C,et al.Some issues about outlier detection in rough set theory[J].Expert Systems with Applications,2009,36(3):4680-4687.
[12] 杜栋,庞庆华,吴炎,等.现代综合评价方法与案例精选 [M].北京:清华大学出版社, 2009:218-221.
DU D,PANG Q H,WU Y,et al.Modern comprehensive evaluation method and case selection[M].Beijing:Tsinghua University Press,2009:218-221.
[13] 任少锋,周俊,张修玉,等.基于 BP神经网络模型的爆破对邻近管道振动预测研究[J].矿业研究与开发,2018,38(9):104-108.
REN S F,ZHOU J,ZHANG X Y,et al.Prediction of vibration of adjacent pipelines by blasting based on BP neural network model[J].Mining Research and Development,2018,38(9): 104-108.
[14] 李美美.基于 BP神经网络的机电产品造型意象预测模型研究[D].西安:长安大学, 2018:5-15.
LI M M.Electromechanical production modeling image prediction model research based on BP neural network[D].Xi'an:Chang'an University,2018:5-15.
[15] 张利,吴华玉,卢秀颖.基于粗糙集的改进 BP神经网络算法研究[J].大连理工学报,2009,49(6):971-976.
ZHANG L,WU H Y,LU X Y.An improved BP neural network algorithm research based on rough set[J].Journal of Dalian University of Technology,2009,49(6):971-976.
[16] 李瑞杰.基于 BP神经网络的地区售电量预测新方法研究[D].西安:西安科技大学, 2018:4-8.
LI R J.Research on new method of regional electricity consumption forecast based on BP neural network[D].Xi'an: Xi'an University of Science and Technology,2018:4-8.
[17] 藏红岩.基于 Rosetta的粗糙集神经网络在风机故障诊断中的应用[J].可编程控制器与工厂自动化,2011(5):79-80.
ZANG H Y.Rough set reduction of fan fault diagnosis based on Rosetta[J].Programmable Controller & Factory Automation(PLC & FA),2011(5):79-80.
[18] 李伟岸.基于粗糙集理论和神经网络方法的飞行冲突解脱研究[D].天津:中国民航大学, 2018:21-24.
LI W A.Research on ?ight con?ict resolution based on rough set theory and neural network method[D].Tianjin:Civil Aviation University of China,2018:21-24.
[19] 曾注,王斌,刘东.基于粗糙集-BP神经网络客户群特征与服务映射模型研究[J].武汉理工大学学报,2013,37(4):758-762.
ZENG Z,WANG B,LIU D.Study on characteristics of the customer base and service mapping model based on rough sets and BP neural network[J].Journal of Wuhan University of Technology,2013,37(4):758-762.
[20] 杨叶坤,刘东华,陈仕鸿.基于 BP神经网络的税务稽查研究[J].湖南人文科技学院学报,2013(3):78-80.
YANG Y K,LIU D H,CHEN S H.Study on tax inspection based on BP neural network[J].Journal of Hunan Institute of Humanities Science and Technology,2013(3):78-80.
[21] 彭星煜,刘立升,吕娜,等.基于 BP神经网络的油气长输管道失效概率预测[J].全面腐蚀与控制,2009,23(5):12-16.
PENG X Y,LIU L S,LYU N,et al.Long-distance oil/gas pipeline failure rate prediction using BP arti?cial neural network model[J].Total Corrosion Control,2009,23(5):12-16.
[22] 程泽华.基于人工神经网络的 MATLAB接触线磨耗预测模型研究[D].北京:中国铁道科学研究院, 2018:24-28.
CHENG Z H.Research on MATLAB contact line wear prediction model based on arti?cial neural network[D].Beijing: China Academy of Railway Sciences,2018:24-28.

相似文献/References:

[1]周鹏,袁宗明,谢英,等.塔河油田集输系统污水腐蚀因素分析[J].油气储运,2008,27(5):45.[doi:DOI:10.6047/j.issn.1000-8241.2008.05.013]
 ZHOU Peng,YUAN Zongming.Study on Corrosion Factors of the Produced Water from Gathering System in Tahe Oilfield[J].Oil & Gas Storage and Transportation,2008,27(03):45.[doi:DOI:10.6047/j.issn.1000-8241.2008.05.013]
[2]邓燕,邢宇,姜霞.超导炉在油田集输系统中的应用[J].油气储运,2004,23(11):48.[doi:10.6047/j.issn.1000-8241.2004.11.015]
 DENG Yan,XING Yu.The Application of Super-Conducting Furnace in oil Gathering-line System of Oilfield[J].Oil & Gas Storage and Transportation,2004,23(03):48.[doi:10.6047/j.issn.1000-8241.2004.11.015]
[3]田栓魁,韩专,霍彦莉.储罐自动清砂新技术[J].油气储运,2000,19(06):40.[doi:10.6047/j.issn.1000-8241.2000.06.013]
 Tian Shuankui,Han Zhuan.The New Technology of Tank Non-entrance Automatic Desanding[J].Oil & Gas Storage and Transportation,2000,19(03):40.[doi:10.6047/j.issn.1000-8241.2000.06.013]
[4]刘扬,刘晓燕,魏立新,等.原油集输系统转油站效率及能耗测算[J].油气储运,2006,25(11):50.[doi:10.6047/j.issn.1000-8241.2006.11.014]
 LIU Yang,LIU Xiaoyan.The Efficiency Computing and Energy Dissipation Analysis of Oil Transferring Station in Niuxintuo Oilfield[J].Oil & Gas Storage and Transportation,2006,25(03):50.[doi:10.6047/j.issn.1000-8241.2006.11.014]
[5]梅永贵 郭简 王景悦 薛占新 王仙之 杜晓冬 赵磊 屈丽彬.沁水煤层气集输管网三维地理信息系统的设计[J].油气储运,2016,35(预出版):1.
 MEI Yonggui,GUO Jian,WNG Jingyue,et al.Design of 3D GIS for coal-bed methane (CBM) gathering pipeline network in the Qinshui Basin[J].Oil & Gas Storage and Transportation,2016,35(03):1.
[6]冷冬梅. 大庆外围油田电热管单管通球工艺现场试验[J].油气储运,2013,32(10):1080.[doi:10.6047/j.issn.1000-8241.2013.10.010]
 Leng Dongmei. Field test of single-pipe pigging in electric heating pipe inDaqing Peripheral Oilfields[J].Oil & Gas Storage and Transportation,2013,32(03):1080.[doi:10.6047/j.issn.1000-8241.2013.10.010]
[7]梅永贵,郭简,王景悦,等.沁水煤层气集输管网三维地理信息系统的设计[J].油气储运,2015,34(12):1328.[doi:10.6047/j.issn.1000-8241.2015.12.016]
 MEI Yonggui,GUO Jian,WANG Jingyue,et al.Design of 3D GIS for coal-bed methane (CBM) gathering pipeline network in the Qinshui Basin[J].Oil & Gas Storage and Transportation,2015,34(03):1328.[doi:10.6047/j.issn.1000-8241.2015.12.016]
[8]何国玺,梁永图,方利民,等.考虑三维地形及障碍的煤层气田集输系统布局优化[J].油气储运,2016,35(6):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
 HE Guoxi,LIANG Yongtu,FANG Limin,et al.Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles[J].Oil & Gas Storage and Transportation,2016,35(03):638.[doi:10.6047/j.issn.1000-8241.2016.06.014]
[9]刘扬,陈双庆,魏立新.油气集输系统拓扑布局优化研究进展[J].油气储运,2017,36(6):601.[doi:10.6047/j.issn.1000-8241.2017.06.001]
 LIU Yang,CHEN Shuangqing,WEI Lixin.Research progress on topology layout optimization of oil and gas gathering and transportation system[J].Oil & Gas Storage and Transportation,2017,36(03):601.[doi:10.6047/j.issn.1000-8241.2017.06.001]
[10]丁锋,李宜佳.川气东送管道首站压缩机启用影响模拟[J].油气储运,2018,37(10):1170.[doi:10.6047/j.issn.1000-8241.2018.10.014]
 DING Feng,LI Yijia.Simulation on the effect of the commissioning of compressors in the initial station of Sichuan to East Gas Pipeline[J].Oil & Gas Storage and Transportation,2018,37(03):1170.[doi:10.6047/j.issn.1000-8241.2018.10.014]

备注/Memo

基金项目:西南油气田分公司基础研究、应用研究及对外交流与合作科技攻关项目“三甘醇脱水工艺安全预警系统研究”, 20190305-11。 作者简介:唐霏,女,1990年生,助理工程师, 2018年硕士毕业于西南石油大学油气储运工程专业,现主要从事油气储运安全相关的研究工作。地址:四川省成都市高新区天府大道北段 12号中国石油西南油气田科技大厦安全环保与技术监督研究院, 610041。电话: 18380121450。Email:799424394@qq.com

更新日期/Last Update: 2019-03-20