分享
[1]蔡永军,蒋红艳,王继方,等.智慧管道总体架构设计及关键技术[J].油气储运,2019,38(02):121-129.[doi:10.6047/j.issn.1000-8241.2019.02.001]
 CAI Yongjun,JIANG Hongyan,WANG Jifang,et al.The overall architecture design and key construction technologies of intelligent pipelines[J].Oil & Gas Storage and Transportation,2019,38(02):121-129.[doi:10.6047/j.issn.1000-8241.2019.02.001]
点击复制

智慧管道总体架构设计及关键技术

参考文献/References:

[1] 中华人民共和国国务院. 新一代人工智能发展规划(国发〔2017〕35 号)[EB/OL].(2018-03-10)[2018-07-08]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.html.
The State Council of the People’s Republic of China. Development planning of new-generation artificial intelligence (State Council 〔2017〕NO.35)[EB/OL]. (2018-03-10)[2018- 07-08]. http://www.gov.cn/zhengce/content/2017-07/20/ content_5211996.html.
[2] 中华人民共和国工业和信息化部. 促进新一代人工智能产业发展三年行动计划(2018-2020 年)(工信部科〔2017〕315 号)[EB/OL]. (2017-12-14)[2018-03-10]. http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757016/c5960820/content.html.
Ministry of Industry and Information Technology of the People’s Republic of China. Three-year action plan to promote the development of new-generation artificial intelligence industry (2018-2020)(MIIT〔2017〕NO.315)[EB/OL]. (2017-12-14) [2018-03-10]. http://www.miit.gov.cn/n1146295/n1652858/ n1652930/n3757016/c5960820/content.html.
[3] 黄维和. 对我国《中长期油气管网规划》的解读和思考[EB/OL]. (2017-07-20)[2018-03-10]. http://www.gov.cn/zhengce/2017- 07/20/content_5212142.html.
HUANG W H. Reading and thinking on domestic “Middle- and long-term planning of oil and gas pipeline networks” [EB/OL]. (2017-07-20)[2018-03-10]. http://www.gov.cn/zhengce/2017-07 /20/content_5212142.html.
[4] 李遵照,王剑波,王晓霖,等. 智慧能源时代的智能化管道系统 建设[J]. 油气储运,2017,36(11):1243-1250.
LI Z Z,WANG J B,WANG X L,et al. Construction of intelligent pipeline system in the era of smart energy[J]. Oil & Gas Storage and Transportation,2017,36(11):1243-1250.
[5] 王昆,李琳,李维校. 基于物联网技术的智慧长输管道[J]. 油气 储运,2018,37(1):15-19.
WANG K,LI L,LI W X. Intelligent long distance pipeline based on Internet of Things technology[J]. Oil & Gas Storage and Transportation,2018,37(1):15-19.
[6] 郑轶群. 浅谈智慧油田行业解决方案[J]. 仪器仪表用户,2017, 24(1):84-86.
ZHENG Y Q. Introduction on solutions in intelligent oilfield industry[J]. Electronic Instrumentation Customer,2017,24(1): 84-86.
[7] ZHONG R Y,XU X,KLOTZ E, et al. Intelligent manufacturing in the context of industry 4.0:a review[J]. Engineering,2017, 3(5):616-630.
[8] CIVERCHIA F,BOCCHINO S,SALVADORI C,et al. Industrial Internet of Things monitoring solution for advanced predictive maintenance applications[J]. Journal of Industrial Information Integration,2017,7:4-12.
[9] 曾妍. 中国石油步入智慧管道建设阶段[J]. 天然气与石油, 2017,35(4):72.
ZENG Y. PetroChina steps into the construction stage of smart pipeline[J]. Natural Gas and Oil,2017,35(4):72.
[10] 张海峰,蔡永军,李柏松. 智慧管道站场设备状态监测关键技 术[J]. 油气储运,2018,37(8):841-839.
ZHANG H F,CAI Y J,LI B S. Key technologies of equipment condition monitoring at the station of smart pipeline[J]. Oil & Gas Storage and Transportation,2018,37(8):841-839.
[11] XU W,SHAO L,YAO B,et al. Perception data-driven optimization of manufacturing equipment service scheduling in sustainable manufacturing[J]. Journal of Manufacturing Systems,2016,41:86-101.
[12] 彭向阳,陈驰,饶章权,等. 基于无人机多传感器数据采集的 电力线路安全巡检及智能诊断[J]. 高电压技术,2015,41(1): 159-166.
PENG X Y,CHEN C,YAO Z Q,et al. Safety inspection and intelligent diagnosis of transmission line based on unmanned helicopter of multi sensor data acquisition[J]. High Voltage Engineering,2015,41(1):159-166.
[13] AHMED E,YAQOOB I,HASHEM I A T,et al. The role of big data analytics in Internet of Things[J]. Computer Networks,2017,129:459-471.
[14] 宋亚奇,周国亮,朱永利. 智能电网大数据处理技术现状与挑 战[J]. 电网技术,2013,37(4):927-935.
SONG Y Q,ZHOU G L,ZHU Y L. Present status and challenges of big data processing in smart grid[J]. Power System Technology,2013,37(4):927-935.
[15] ALSMIRAT M A,JARARWEH Y,OBAIDAT I,et al. Internet of surveillance:a cloud supported large-scale wireless surveillance system[J]. The Journal of Supercomputing,2017, 73(3):973-992.
[16] KUSUMAKUMARI V,SHERIGAR D,CHANDRAN R,et al. Frequent pattern mining on stream data using Hadoop CanTree- GTree[J]. Procedia Computer Science,2017,115:266-273.
[17] 刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究 与进展,2016,53(5):582-600.
LIU Q,LI Y,DUAN H,et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016,53(5):582-600.
[18] 乔汉林,孙玲玲. 大数据在油气管道建设及运行中的应用研 究[J]. 石油工业计算机应用,2016(6):44-45.
QIAO H L,SUN L L. Application research of big data technology in oil & gas pipelines construction and operation[J]. Computer Applications of Petroleum,2016(6):44-45.
[19] 董绍华,张河苇. 基于大数据的全生命周期智能管网解决方 案[J]. 油气储运,2017,36(1):28-36.
DONG S H,ZHANG H W. Solution of full-life-cycle intelligent pipeline network based on big data[J]. Oil & Gas Storage and Transportation,2017,36(1):28-36.
[20] 郭磊,周利剑,贾韶辉. 油气长输管道大数据研究及应用[J]. 石 油规划设计,2018(1):34-37.
GUO L,ZHOU L J,JIA S H. Research and application of big data technology in oil and gas pipelines[J]. Petroleum Planning & Engineering,2018(1):34-37.
[21] 刘阳,曾鹏,于海斌. 面向智慧油田的工业物联网语义集成技 术研究[J]. 中兴通讯技术,2016,22(5):51-55.
LIU Y,ZENG P,YU H B. Semantic integration for smart field based on industrial Internet of Things[J]. ZTE Technology Journal,2016,22(5):51-55.
[22] 袁鹏斌,刘凤艳,舒江,等. 大数据时代油气管道的安全与防 护[J]. 无损检测,2015(4):51-55.
YUAN P B,LIU F Y,SHU J,et al. Security and protection of oil and gas pipelines in big data era[J]. Nondestructive Testing, 2015(4):51-55.
[23] 周国亮,宋亚奇,王桂兰,等. 状态监测大数据存储及聚类划分 研究[J]. 电工技术学报,2013,28(2):337-344.
ZHOU G L,SONG Y Q,WANG G L,et al. Research of condition monitoring big data storage and clustering[J]. Transactions of China Electrotechnical Society,2013,28(2): 337-344.
[24] 刘红岩,陈剑,陈国青. 数据挖掘中的数据分类算法综述[J]. 清 华大学学报(自然科学版),2002,42(6):727-730.
LIU H Y,CHEN J,CHEN G Q. Review of classification algorithms for data mining[J]. Journal of Tsinghua University (Science and Technology),2002,42(6):727-730.
[25] H I D A Y A N T O B C ,M U H A M M A D R F , KUSUMAWARDANI R P,et al. Network intrusion detection systems analysis using frequent item set mining algorithm FPMax and Apriori[J]. Procedia Computer Science,2017,124: 751-758.
[26] WANG K,TANG L,HAN J,et al. Top down FP-growth for association rule mining[J]. Advances in Knowledge Discovery and Data Mining,2002,2336:334-340.
[27] 张润,王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大 学学报(自然科学版),2016,23(2):10-18.
ZHANG R,WANG Y B. Research on machine learning with algorithm and development[J]. Journal of Communication University of China(Science and Technology),2016,23(2): 10-18.
[28] 何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模 式识别与人工智能,2014,27(4):327-336.
HE Q,LI N,LUO W J,et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence,2014,27(2):327-336.
[29] OISHI A,YAGAWA G. Computational mechanics enhanced by deep learning[J]. Computer Methods in Applied Mechanics and Engineering,2017,327:327-351.
[30] WIELGOSZ M,SKOCZEN A,MERTIK M. Us ing LSTM recurrent neural networks for monitoring the LHC superconducting magnets[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers, Detectors and Associated Equipment,2017,867:40-50.
[31] 陈涛,夏翠娟,刘炜,等. 关联数据的可视化技术研究与实现[J]. 图书情报工作,2015,59(17):113-119.
CHEN T,XIA C J,LIU W,et al. Research and implementation of visualization technology for linked data[J]. Library and Information Service,2015,59(17):113-119.

相似文献/References:

[1]蔡永军 蒋红艳 王继方 王潇潇 李莉 陈国群 张海峰.智能化管道建设关键技术研究进展[J].油气储运,2018,37(预出版):1.
 CAI Yongjun,JIANG Hongyan,WANG Jifang,et al.Research progress on key construction technologies of intelligent pipelines[J].Oil & Gas Storage and Transportation,2018,37(02):1.
[2]张海峰,蔡永军,李柏松,等.智慧管道站场设备状态监测关键技术[J].油气储运,2018,37(8):841.[doi:10.6047/j.issn.1000-8241.2018.08.001]
 ZHANG Haifeng,CAI Yongjun,LI Baisong,et al.Key technologies of equipment condition monitoring at the station of intelligent pipeline[J].Oil & Gas Storage and Transportation,2018,37(02):841.[doi:10.6047/j.issn.1000-8241.2018.08.001]

备注/Memo

基金项目:国家重点研发计划资助项目“油气管道及储运设施安全状态监测与防护技术研究”,2016YFC0802103 。
作者简介:蔡永军,男,1980 年生,高级工程师,2005 年硕士毕业于天津大学精密仪器专业,现主要从事油气管道安全防护技术研究,以及高寒冻土区管道的运营管理和维护工作。地址:河北省廊坊市广阳区金光道51 号,065000。电话:0316-2073167。Email:yjcai@petrochina.com.cn

更新日期/Last Update: 2019-02-20