版权所有@2014 《油气储运》杂志社 冀ICP备号:0000000
地址:河北省廊坊市金光道51号(065000);电话:0316-2177193 / 0316-2176753; 传真:0316-2177392; 网址:yqcy.paperonce.org
技术支持:西安三才科技实业有限公司 029-89381847;029-88222991
管式紧凑型高压电场破乳器的性能试验
Performance test of compact tubular high-voltage electric field coalescers
high-voltage electric field demulsification
; tubular electric field coalescers; particle size distribution; focused beam reflectance measurement (FBRM) instrument; dynamic test evaluation为了探究油包水型乳化液在电场破乳过程中分散相水颗粒粒径的实际分布情况,并依据粒径变化规律得出最优电场参数,基于自主设计研制的管式紧凑型多流道高压电场破乳器,使用G600型聚焦光束反射测量仪和高频/高压脉冲交流电源,搭建了一套高压电场破乳动态测试评价系统。在验证评价系统有效性的基础上,系统开展了电场强度、频率、占空比及含水率对管式紧凑型高压电场破乳器破乳性能影响的测试评价研究。结果表明:对于所配制30%含水率的白油乳化液,破乳最优电场参数组合为场强1.2 kV/cm、频率1 500 Hz、占空比45%。相继变更白油乳化液的含水率为20%和40%,得到最优电场强度分别为1.65 kV/cm、1.05 kV/cm,最优频率分别为2 000 Hz、1 500 Hz,表明随着乳化液含水率增加,破乳所需最优电场强度逐渐降低,最优频率也呈减小趋势。自主研发的高压电场破乳测试评价系统和评价方法,能够准确有效地表征乳化液中分散相粒径分布的变化规律。(图17,表2,参22)
In order to explore the actual change in the particle size distribution of the dispersed phase water droplets of the water-in-oil emulsion in the electric field demulsification process, and obtain the optimal electric field parameters according to the change rules of the particle sizes, a dynamic test evaluation system for high-voltage electric field demulsification was set up with a self-developed compact tubular high-voltage electric field coalescer, a G600 focused beam reflectance measurement instrument and a high-frequency/high-voltage pulsed AC power supply. On the basis of testing and verifying the effectiveness of the evaluation system, tests of evaluation for the impact of the electric field intensity, frequency, duty cycle and water content on the performance of the compact tubular high-voltage electric field coalescer were conducted systematically. The test results indicate that: for the prepared white oil emulsion with a water content of 30%, the optimal combination of electric field parameters for demulsification comprises an electric field intensity of 1.2 kV/cm, a frequency of 1 500 Hz and a duty cycle of 45%. With the water content of the white oil emulsion changed to 20% and 40% successively, the optimal electric field intensities obtained are 1.65 kV/cm and 1.05 kV/cm, and the optimal frequencies are 2 000 Hz and 1 500 Hz respectively, which indicates that the optimal electric field intensity decreases gradually with the water content of the emulsion increasing. Meanwhile, the optimal frequency also presents a trend of decreasing. The self-developed test evaluation system and the evaluation method for high-voltage electric field demulsification can accurately and effectively characterize the change rules of the particles size distribution of the dispersed phase in the emulsion. (17 Figures, 2 Tables, 22 References)
[1] 陈家庆,常俊英,王晓轩,丁艺,王春升. 原油脱水用紧凑型静电 预聚结技术(一)[J]. 石油机械,2008,36(12):75-80. CHEN J Q, CHANG J Y, WANG X X, DING Y, WANG C S. Compact electrostatic pre-coalescence technology for crude oil dehydration(Ⅰ)[J]. China Petroleum Machinery, 2008, 36(12): 75-80.
[2] 宋菁. 原油脱水技术研究进展[J]. 化工技术与开发,2019,48(6): 33-37. SONG J. Research progress of crude oil dehydration technology[J]. Technology & Development of Chemical Industry, 2019, 48(6): 33-37.
[3] 陈家庆,黄松涛,沈玮玮,潘泽昊,张龙,张宝生. W/O 型原油乳化 液高频电场破乳特性实验[J]. 油气储运,2017,36(6):694-701. CHEN J Q, HUANG S T, SHEN W W, PAN Z H, ZHANG L, ZHANG B S. Experiment on demulsification characteristics of water-in-oil emulsions in high-frequency electric field[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 694-701.
[4] 肖蕴,赵军凯,许涛,刘树文,王宏智. 原油电脱水器技术进展[J]. 石油化工设备,2009,38(6):49-53. XIAO Y, ZHAO J K, XU T, LIU S W, WANG H Z. Review of the technology of electrostatic enhancement of coalescence of water droplets in oil[J]. Petro-Chemical Equipment, 2009, 38(6): 49-53.
[5] 王传硕,董平省,马千里,王玮,宫敬. 乳化含蜡原油沉积层含水 研究进展[J]. 油气储运,2020,39(1):32-39. WANG C S, DONG P S, MA Q L, WANG W, GONG J. Research progress on the water entrainment in the deposition layer of emulsified waxy crude oil[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 32-39.
[6] 陈家庆,黄松涛,王姬革,习进路. 高频/高压脉冲交流电场破 乳技术及其原油电脱盐应用研究[J]. 石油炼制与化工,2017, 48(8):12-19. CHEN J Q, HUANG S T, WANG J G, XI J L. Research of electrostatic demulsification technology under high-frequency/ high-voltage pulsed AC electric field and its application in crude oil desalting[J]. Petroleum Processing and Petrochemicals, 2017, 48(8): 12-19.
[7] 熊荣雷,柳鹏,杨炳华. 静电聚结破乳技术在南海某油田的应用[J]. 涂层与防护,2021,42(6):48-52. XIONG R L, LIU P, YANG B H. Application of electrostatic coalescence demulsification process in an oilfield of South China Sea[J]. Coating and Protection, 2021, 42(6): 48-52.
[8] 陈家庆,王强强,肖建洪,安申法,郝金克,张明,等. 高含水油井 采出液预分水技术发展现状与展望[J]. 石油学报,2020,41(11): 1434-1444. CHEN J Q, WANG Q Q, XIAO J H, AN S F, HAO J K, ZHANG M, et al. Development status and prospect of water preseparation technology for produced liquid in high water-cut oil well[J]. Acta Petrolei Sinica, 2020, 41(11): 1434-1444.
[9] 董建宇. 老化油回掺处理用管式静电聚结器的室内研究与工程 应用[D]. 北京:北京石油化工学院,2020. DONG J Y. Indoor research and engineering application of inline electrostatic coalecer for aged oil back-mixing treatment[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020.
[10] SELLMAN E, SAMS G, PAVAN MANDEWALKAR S. Improved dehydration and desalting of mature crude oil fields[C]. Manama: SPE Middle East Oil and Gas Show and Conference, 2013: SPE-164289-MS.
[11] 陈家庆,李汉勇,常俊英,王辉. 原油电脱水(脱盐)的电场设计 及关键技术[J]. 石油机械,2007,35(1):53-58. CHEN J Q, LI H Y, CHANG J Y, WANG H. Electric field design and key technologies of electric crude oil dehydration (desalination)[J]. China Petroleum Machinery, 2007, 35(1): 53-58.
[12] 陈家庆,初庆东,张宝生,丁艺,王春升. 原油脱水用紧凑型静 电预聚结技术(二)[J]. 石油机械,2009,37(5):77-82. CHEN J Q, CHU Q D, ZHANG B S, DING Y, WANG C S. Compact electrostatic pre-coalescence technology for crude oil dehydration(Ⅱ)[J]. China Petroleum Machinery, 2009, 37(5): 77-82.
[13] HANA M. Electrostatic coalesce: US8702952[P]. 2014-04-22.
[14] AKDIM M R, KRUIJTZER G L, ANTSIFEROV P. Electrostatic coalescer with resonance tracking circuit: US9440241[P]. 2016-09-13.
[15] 沈玮玮,陈家庆,胡成勇,黄松涛,张颂,胡静. 原油脱水(盐)用 双频电场技术研发及应用[J]. 石油机械,2014,42(3):56-60. SHEN W W, CHEN J Q, HU C Y, HUANG S T, ZHANG S, HU J. Development and application of dual frequency electric field technology for crude oil dehydration (desalting)[J]. China Petroleum Machinery, 2014, 42(3): 56-60.
[16] LESS S, VILAGINES R. Light beam reflectance measurement of droplets diameter distribution in crude oil emulsions[J]. Fuel, 2013, 109: 542-550.
[17] ALINEZHAD K, HOSSEINI M, MOVAGARNEJAD K, SALEHI M. Experimental and modeling approach to study separation of water in crude oil emulsion under non-uniform electrical field[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 198-205.
[18] 金有海,胡佳宁,孙治谦,王振波. 高压高频脉冲电脱水性能影响 因素的实验研究[J]. 高校化学工程学报,2010,24(6):917-922. JIN Y H, HU J N, SUN Z Q, WANG Z B. Experimental study of factors acting on the performance of high-voltage and highfrequency pulse electrostatic dewatering process[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(6): 917-922.
[19] 杨东海,何利民,罗小明,张海龙. 新型静电聚结器中水滴聚结 特性研究[J]. 高校化学工程学报,2012,26(2):222-227. YANG D H, HE L M, LUO X M, ZHANG H L. Investigation on coalescence characteristics of water droplets in new type electrostatic coalescer[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 222-227.
[20] 杨东海,何利民,罗小明,吕宇玲. 新型静电聚结器中水滴粒径 的分布特性[J]. 石油学报(石油加工),2012,28(3):505-511. YANG D H, HE L M, LUO X M, LYU Y L. Characteristics of water droplet diameter distribution in new electrostatic coalescer[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(3): 505-511.
[21] 孟浩,张明,陈家庆,潘泽昊,王春升,张龙,等. 非均匀高频电 场下W/O 型乳化液动态破乳聚结特性的实验研究[J]. 高校化 学工程学报,2018,32(2):347-357. MENG H, ZHANG M, CHEN J Q, PAN Z H, WANG C S, ZHANG L, et al. Dynamic demulsification and aggregation of water-in-oil emulsions under non-uniform high-frequency electric field[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 347-357.
[22] 李玮健. 老化油高频高压脉冲交流电场破乳的机理与设备研 究[D]. 北京:北京石油化工学院,2018. LI W J. The research on mechanism and device of aged oil demulsification under high voltage and high frequency pulsed AC electric field[D]. Beijing: Beijing Institute of Petrochemical Technology, 2018.
收稿日期:2020-03-17;修回日期:2021-09-02;编辑:王雪莉
基金项目:中海石油(中国)有限公司北京研究中心科研项目“老化油处理设备设计及配套电源系统研制”,CCL2019RCPS0254RNN;中国石油化工股份有限公司科研项目“100 m3/h 炼化企业污水气旋浮高效除油工业试验研究”,317009-2。
作者简介:董建宇,男,1994 年生,在读博士生,2020 年硕士毕业于北京石油化工学院机械工程专业,现主要从事环保多相流高效分离技术与设备的研究工作。地址:北京市大兴区黄村镇清源北路19 号,102617。电话:18211179740。Email:dongjianyu666@sina.com
通信作者:陈家庆,男,1970 年生,教授,博士生导师,1997 年博士毕业于中国石油大学(北京)油气钻井工程专业,现主要从事环保多相流高效分离技术与设备的研究工作。地址:北京市大兴区黄村镇清源北路19 号,102617。电话:13911586175。Email:Jiaqing@bipt.edu.cn